期刊文献+

DBN和GRU混合的Android恶意软件检测模型 被引量:2

Android Malware Detection Model Using Combined DBN and GRU
在线阅读 下载PDF
导出
摘要 针对Android平台恶意软件数量增长迅猛,种类日益增多的现状,提出了一种基于深度置信网络和门控循环单元网络混合的Android恶意软件检测模型。通过自动化提取Android应用软件的特征,包括权限等静态特征和应用运行时的动态特征进行训练,对Android恶意软件进行检测和分类。实验结果表明,混合了门控循环单元网络和深度置信网络的混合模型,在检测效果上优于传统的机器学习算法和深度置信网络模型。 With the rapid growth of the number and variety of malwares on the Android platform,an Android malware detection model based on a mixture of deep belief networks and gated recurrent unit was proposed.The android malware is detected and classified by automatically extracting the features of Android application software,including static features such as permissions and dynamic features during application runtime.Experimental results show that the hybrid model with a gated recurrent unit network is superior to traditional machine learning algorithms and deep belief network models in detecting results.
作者 欧阳立 芦天亮 暴雨轩 李默 OUYANG Li;LU Tianliang;BAO Yuxuan;LI Mo(School of Police Information Engineering and Cyber Security,People s Public Security University of China,Beijing 100076,China)
出处 《中国人民公安大学学报(自然科学版)》 2020年第1期104-108,共5页 Journal of People’s Public Security University of China(Science and Technology)
基金 国家重点研发计划“网络空间安全”重点专项(2017YFB0802804) “十三五”国家密码发展基金密码理论研究重点课题(MMJJ20180108)。
关键词 安卓 恶意软件检测 深度置信网络 门控循环单元 Android malware detection deep belief network gated recurrent unit
  • 相关文献

参考文献3

二级参考文献37

  • 1Gartner, Gartner says Android has surpassed a billion shipments of devices, http://www.gartner.com/ newsroongid/2954317, 2015.
  • 2T. Vidas, D. Votipka, and N. Christin, All your droid are belong to us: A survey of current Android attacks, inProceedings of the 5th USENIX Workshop on Offensive Technologies (WOOT), 2011, pp. 81-90.
  • 3A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, A survey of mobile malware in the wild, in Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM), 2011, pp. 3-14.
  • 4McAfee, McAfee labs threats report, http://www. mcafee.con-dus/resources/reports/rp-quarterly-threat-q4- 2013.pdf, 2015.
  • 5A. Mylonas, A. Kastania, and D. Gritzalis, Delegate the smartphone user? Security awareness in smartphone platforms, Computers & Security, vol. 34, pp. 47-66, 2013.
  • 6Z. Fang, W. Han, and Y. Li, Permission based Android security: Issues and countermeasures, Computers & Security, vol. 43, pp. 205-218, 2014.
  • 7J. Xu, Y.-T. Yu, Z. Chert, B. Cao, W. Dong, Y. Guo, and J. Cao, Mobsafe: Cloud computing based forensic analysis for massive mobile applications using data mining, Tsinghua Science and Technology, vol. 18, no. 4, pp. 418--427, 2013.
  • 8R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, Whyper: Towards automating risk assessment of mobile applications, in Proceedings of the 22nd USENIX Security Symposium (USENIX Security), 2013, pp. 527-542.
  • 9Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, Autocog: Measuring the description-to-permission fidelity in Android applications, in Proceedings of the 21st ACM Conference on Computer and Communications Security (CCS), 2014, pp. 1354-1365.
  • 10D. Geneiatakis, I. N. Fovino, I. Kounelis, and P. Stirparo, A permission verification approach for Android mobile applications, Computers & Security, vol. 49, pp. 192-205, 2015.

共引文献57

同被引文献24

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部