摘要
针对现有可移开式开关柜无法确认断路器手车梅花触头啮合尺寸是否符合要求的情况,提出了一种基于底盘车驱动电机运行数据,适用于不同触头对中度的啮合尺寸计算方法。首先,分析了触头对中度对啮合尺寸的影响;其次,详细说明了啮合尺寸计算要点,包括利用位于电流曲线上的等效啮合点计算啮合尺寸和以支持向量机算法定位等效啮合点位置;为使支持向量机分类模型满足不同对中度下的定位要求,对啮入阶段样本进行重构,构建可以表征等效啮合点位置与触头对中度的特征向量;最后,采集新数据,对比方法计算结果和人工测量结果。结果表明:方法在不同对中度下,可以较为精确的计算啮合尺寸。方法为断路器手车梅花触头啮合尺寸计算提供一种新思路。
Aiming at the problem that the meshing distance of tulips contacts of circuit breakers cannot be measured,a method to calculate the tulip contacts’meshing distance of circuit breakers which was suitable for different concentricity of the tulip contacts based on the operating data of driving motor of chassis car was proposed.First,the influence of concentricity of tulip contacts on the meshing distance was analyzed.Secondly,the essential points to calculate the meshing distance was described in detail,including the calculation of meshing distance by using equivalent meshing point on the current curve and employing support vector machine algorithm to locate the equivalent meshing point.In order to make the model meet the requirements of positioning equivalent meshing point under different concentricity,the samples of meshing-beginning stage were reconstructed.The eigenvector which could indicate the position of the equivalent meshing points and the concentricity was constructed.Finally,new data was sampled to examine the method.The results show that the accuracy of the algorithm was good under different concentricity and it could provide with a new idea to measure the meshing distance of contacts.
作者
王刚
彭彦卿
庄志坚
熊逸伟
WANG Gang;PENG Yanqing;ZHUANG Zhijian;XIONG Yiwei(School of Engineering and Automation,Xiamen University of Technology,Xiamen 361024,China;ABB(China)Co.,Ltd.,Power Product Medium Voltage Technology Center,Fujian xiamen 361101,China;State Grid Loudi Power Supply Company,Hunan Loudi 417000,China)
出处
《高压电器》
CAS
CSCD
北大核心
2020年第4期35-41,61,共8页
High Voltage Apparatus
基金
福建省自然科学基金(2019J01867)。
关键词
高压断路器
梅花触头啮合尺寸
无刷直流电机电机运行数据
三次样条插值
支持向量机
high voltage circuit breaker
meshing distance of tulip contacts
operation data of a BLDCM
cubic spline interpolation
support vector machine