期刊文献+

改进ORB特征提取与匹配算法研究 被引量:12

Research on improving ORB feature extraction and matching algorithm
在线阅读 下载PDF
导出
摘要 在实现图像拼接过程中,ORB算法能够较好地解决运行实时性问题,但是在机器人与实际环境之间的距离变化,导致图像尺寸发生改变,或运动过程中抖动导致的图像模糊时,该算法匹配效率和准确度较差。针对该问题,提出一种改进的ORB特征提取与匹配算法。首先提取具有尺度不变性的特征点,然后利用汉明距离对特征点进行分类、匹配,最后利用改进的RANSAC算法,有效消除误匹配点。实验结果表明:改进算法在提升了匹配的效率和准确度的同时可以满足实时性的要求。 In the process of realizing image Mosaic,ORB algorithm can solve the real-time problem of operation well. However,due to the distance change between the robot and the actual environment,results in change of image size or the image is blurred jittering in the process of movement,the matching efficiency and accuracy of algorithm are poor. To solve this problem,an improved ORB feature extraction and matching algorithm is proposed. Firstly,feature points with scale invariance are extracted,then the feature points are classified and matched by Hamming distance,and finally,the mismatched points are effectively eliminated by the improved RANSAC algorithm.Experimental results show that the improved algorithm can improve the matching efficiency and accuracy and meet the real-time requirements,at the same time.
作者 董永峰 雷晓辉 董瑶 李炜 杨琛 张泽伟 DONG Yongfeng;LEI Xiaohui;DONG Yao;LI Wei;YANG Chen;ZHANG Zewei(School of Artificial Intelligence,Hebei University of Technology,Tianjin 300401,China;Hebei Province Key Laboratory of Big Data Calculation,Tianjin 300401,China)
出处 《传感器与微系统》 CSCD 2020年第4期59-62,共4页 Transducer and Microsystem Technologies
基金 天津市科技计划资助项目(14ZCDGSF00124) 天津市自然科学基金资助项目(16JCYBJC15600)。
关键词 特征点 ORB描述子 汉明距离 改进RANSAC characteristic points ORB descriptors Hamming distance improved RANSAC
  • 相关文献

参考文献6

二级参考文献61

  • 1童宇,蔡自兴.基于特征匹配的全景图的生成[J].华中科技大学学报(自然科学版),2004,32(S1):77-79. 被引量:2
  • 2张振亚,王进,程红梅,王煦法.基于余弦相似度的文本空间索引方法研究[J].计算机科学,2005,32(9):160-163. 被引量:55
  • 3陶唐飞,韩崇昭,吴艳琪,康欣.Motion estimation based on an improved block matching technique[J].Chinese Optics Letters,2006,4(4):208-210. 被引量:6
  • 4王小敏.一种立体计算机视觉技术的仿真研究[J].系统仿真学报,2006,18(5):1139-1142. 被引量:3
  • 5Lowe D G.Object recognition from local scale-invariant feature[C]//Proc of the International Conference on Computer Vision,1999:1150-1157.
  • 6Lowe D G.Distinctive image feature from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 7Luo Jun,Ma Yong,Takikawa E,et al.Person-specific SIFT features for face recognition[C]//2007 IEEE International Conference on Acoustics,Speech,and Signal Processing,2007.
  • 8Lowe D G.Demo software:SIFT keypoint detector[EB/OL].[2014-02-01].http://www.cs.ubc.ca/~lowe/keypoints/.
  • 9Rosin P L. Measuring comer properties [ J ]. Computer Vision and Image Understanding, 1999,73 ( 2 ) : 291 - 307.
  • 10Sattler T, Leibe B, Kobbelt L. SCRAMSAC: improving RANSAC's efficiency with a spatial consistency filter [ C]///Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2009: 2090- 2097.

共引文献131

同被引文献80

引证文献12

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部