期刊文献+

一种稀疏重构的相关干涉仪测向算法

A Sparse Reconstruction Direction Finding Algorithm for Coherent Interferometers
在线阅读 下载PDF
导出
摘要 针对基于凸优化模型的相关干涉仪测向算法计算量过大的问题,提出了一种基于稀疏度自适应匹配追踪算法的相关干涉仪测向算法。该算法首先根据压缩感知原理利用传统相关干涉仪算法的测向数据库作为基底将入射信号稀疏表示;接着,根据贪婪算法对信号进行重构,估计入射信号的方位。该算法的优点在于在迭代过程中引入回溯思想,自动调整估计步长,实现计算复杂度和估计精度的平衡。仿真结果表明,相比基于凸优化模型的相关算法,该算法的计算量大大降低,测向速度提升24.6%,特别在多入射信号情况下具有明显优势。 To reduce the calculation of coherent interferometer direction finding( DF) algorithm based on convex optimization model,a coherent interferometer DF algorithm based on sparse adaptive matching pursuit algorithm is proposed. Firstly,the sample library of the classical coherent interferometer algorithm is used as the basis to realize sparse presentation of the incident signal according to compressive sensing theory.Secondly,the signal is reconstructed according to the greedy algorithm and the orientation of the incident signal is estimated.The advantage of this algorithm is that it introduces retrospective ideal in the iterative process and achieves a balance between complexity and precision by automatic adjustment step.The simulation results verify that the calculation of the proposed algorithm is greatly reduced compared with that of the algorithm based on convex optimization model.The DF speed is increased by 24.6% and the algorithm has obvious superiority especially in the condition of multi-signal.
作者 傅晓坤 冯晓东 FU Xiaokun;FENG Xiaodong(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《电讯技术》 北大核心 2020年第5期496-501,共6页 Telecommunication Engineering
关键词 相关干涉测向 压缩感知 自适应匹配追踪 稀疏重构 贪婪算法 coherent interferometer direction finding compressive sensing adaptive matching pursuit sparsity reconstruction greedy algorithm
  • 相关文献

参考文献8

二级参考文献143

  • 1周亚强,陈翥,皇甫堪,孙仲康.噪扰条件下多基线相位干涉仪解模糊算法[J].电子与信息学报,2005,27(2):259-261. 被引量:40
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3李淳,廖桂生,李艳斌.改进的相关干涉仪测向处理方法[J].西安电子科技大学学报,2006,33(3):400-403. 被引量:64
  • 4乔钢,张揽月.基于矢量传感器的高分辨频率估计算法研究[J].哈尔滨工程大学学报,2007,28(3):296-300. 被引量:7
  • 5R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 6Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 7Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 8E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 9E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 10Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.

共引文献769

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部