期刊文献+

基于L1-范数的v-双子限定支持向量机 被引量:2

v-Twin Bounded Support Vector Machines Based on L1-Norm
原文传递
导出
摘要 【目的】针对二分类问题,构造了一种新的基于L1-范数的v-双子限定支持向量机(L1-vTBSVM)。【方法】类似于v-双子限定支持向量机(v-TBSVM),L1-vTBSVM确定两个非平行超平面,使得它们更接近于各自的类,并且与另一个类至少有ρ的距离。在L1-vTBSVM中,由于用L1-范数替代了L2-范数,则相较于v-TBSVM,所提模型产生了不同的对偶问题。【结果】在求解对偶问题时避免了昂贵的矩阵逆运算,更重要的是,L1-vTBSVM可以抑制离群值的负面影响,从而提高模型的鲁棒性。因此,改进的模型在处理大规模问题时更有效,且具有更好的泛化能力。【结论】在6个基准数据集上进行了数值实验,验证了该算法在线性、非线性和加入噪声情况下的有效性。 [Purposes]To solve the binary classification problem,a newv-twin bounded support vector machine(L1-vTBSVM)based on L1-norm is proposed.[Methods]Similar to v-TBSVM,L1-vTBSVM determines two non-parallel hyperplanes,making them closer to their respective classes,and at least with a distance of ρ from another class.In L1-vTBSVM,the L2-norm is replaced by the L1-norm,compared to v-TBSVM,the proposed model produces different dual problem.[Findings]The costly inverse matrix operation is avoided when solving the dual problem.More importantly,L1-vTBSVM can suppress the negative influence of outliers and improve the robustness of the model.Therefore,the model proposed is more effective in dealing with large-scale problems and has better generalization ability.[Conclusions]Numerical experiments are carried out on six benchmark datasets to verify the effectiveness of the algorithm under linear,nonlinear and noise-added conditions.
作者 廖均淋 白富生 马龙 LIAO Junlin;BAI Fusheng;MA Long(School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,China)
出处 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2020年第2期1-11,共11页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.11871128)。
关键词 v-TBSVM L1-范数 矩阵逆运算 离群值 v-TBSVM L1-norm inverse of matrix outliers
  • 相关文献

参考文献2

二级参考文献14

  • 1Vapnik V. The nature of statistical learning theory [M]. New York:Springer, 1995.
  • 2Hsu C W,Lin C J. A comparison of methods for multiclass support vector machines[J]. IEEE Transactions on Neural Networks, 2002,13 (2):415-425.
  • 3TaxD M J,Duin R P W. Data domain description using support vectors [ C ] //Anon Poceedings of European Symposium on Artificial Neural Networks. Bruges (Belgium) :D-Facto, 1999 : 251- 256.
  • 4Zhu M L,Wang Y,Chen S F,et al. Sphere-structured support vector machines for multi-class pattern recognition [J]. Lecture Notes in Computer Science,2003,2639:589-593.
  • 5Bykova M,Ostermann S,Tjaden B. Detecting network intrusions via a statistical analysis of network packet characteristics [ C ] //Anon Proceedings of the 33rd Southeastern Symposium on System Theory. Athens: IEEE,2001 ;309-314.
  • 6Han S J , Cho S B. Evolutionary neural networks for a-nomaly detection based on the behavior of a program [J]. IEEE Transactions on Systems,Man. and Cybernetics, Part B,2005:559-570.
  • 7Cao L J,Chua K S,Chong W K. A comparision of PCA, KPCA and ICA for dimensionality reduction in Support Vector Machine[J]. Neurocomputing, 2003, 55(2): 321-336.
  • 8张晨,王晓东.基于支持向量机的网络入侵异常检测[J].重庆工学院学报,2007,21(23):119-121. 被引量:2
  • 9刘洋,张秋余.基于Huffman树的多类SVM方法[J].计算机工程与设计,2008,29(7):1792-1793. 被引量:5
  • 10谢志强,高丽,杨静.改进的球结构SVM多分类增量学习算法[J].哈尔滨工程大学学报,2009,30(9):1041-1046. 被引量:6

共引文献32

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部