期刊文献+

基于并联卷积神经网络的SAR图像目标识别 被引量:6

SAR ATR based on shunt convolutional neural network
在线阅读 下载PDF
导出
摘要 基于合成孔径雷达(synthetic aperture radar,SAR)在图像目标识别领域中识别精度低的问题,设计一种利用并联卷积神经网络(convolutional neural network,CNN)来提取SAR图像特征的目标识别方法.首先利用改进的ELU激活函数代替常规的ReLU激活函数,建立与二次代价函数相结合的深度学习模型.其次采用均方根支柱(root mean square Prop,RMSProp)与Nesterov动量结合的优化算法执行代价函数参数迭代更新的任务,利用Nesterov引入动量改变梯度,从两方面改进更新方式,有效地提高网络的收敛速度与精度.通过对美国国防研究规划局(DARPA)和空军研究实验室(AFRL)共同推出的MSTAR数据集进行实验,实验表明,该文提出的算法能充分提取出SAR图像中各类目标所蕴含的信息,具有较好的识别性能,是一种有效的目标识别算法. In view of the low recognition accuracy of synthetic aperture radar(SAR)in the field of image target recognition,this paper designs a target recognition method for extracting SAR image features by shunt convolutional neural network.Firstly,the improved ELU activation function is used to replace the conventional ReLU activation function,and a deep learning model combined with the quadratic cost function is established.Secondly,this paper uses the optimization algorithm combining root mean square prop(RMSProp)and Nesterov momentum to perform the iterative updating task of cost function parameters,and uses Nesterov to introduce momentum to change the gradient to improve the updating method from two aspects to effectively improve the convergence speed and accuracy of the network.Experiments on the MSTAR data set produced by DARPA and AFRL show that the proposed algorithm is effective in target recognition since that it can extract the information contained in various targets in SAR images sufficiently,and has good recognition performance.
作者 李清 魏雪云 LI Qing;WEI Xueyun(School of Electronic Information,Jiangsu University of Science and Technology,Zhenjiang 212000,China)
出处 《电波科学学报》 EI CSCD 北大核心 2020年第3期364-371,共8页 Chinese Journal of Radio Science
基金 国家自然科学基金(61601206) 江苏省自然科学基金(BK20160565) 江苏省高校自然科学研究项目(16KJD510001)。
关键词 目标识别 卷积神经网络(CNN) ELU RMSProp Nesterov 合成孔径雷达(SAR) target recognition convolutional neural network(CNN) ELU RMSProp Nesterov SAR
  • 相关文献

参考文献8

二级参考文献45

  • 1杨桄,陈克雄,周脉鱼,徐忠林,王宗明.SAR图像中目标的检测和识别研究进展[J].地球物理学进展,2007,22(2):617-621. 被引量:18
  • 2胡利平,刘宏伟,吴顺君.一种新的SAR图像目标识别预处理方法[J].西安电子科技大学学报,2007,34(5):733-737. 被引量:20
  • 3Wright J, Yang A Y. Robust face recognition via sparse repre- sentation[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009, 31 (2) :210 - 227.
  • 4Zhang H C, Nasrabadic N M, Zhang Y N, et al. Joint dynamic sparse representation for multi-view face recognition[J]. Pattern Recognition, 2012, 45 (4) :1290- 1298.
  • 5Zhang H C, Nasrabadic N M, Zhang Y N, et al. Multi view au- tomatic target recognition using joint sparse representation[J]. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (3) :2481 - 2497.
  • 6Aharon M, Elad M, Bruckstein A, et al. K SVD:an algorithm for designing overcomplete dictionaries for sparse representation [J]. IEEE Trans. on Signal Processing ,2006,54(11) :4311 - 4322.
  • 7Jiang Z L, Lin Z, Davis L S. Label consistent K-SVD:learning a discriminative dictionary for recognition[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2013,35(11) : 2651 - 2664.
  • 8Chao Y, David C. MSTAR 10-class classification and confuser and clutter reiection using SVRDM[C]//Proc. of the SPIE, 2006:624501 - 624514.
  • 9Ross T, Worrell S, Velten V, et al. Standard SAR ATR evalua tion experiments using the MSTAR public release data set[C]// Proc. of the Part of the SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery V, 1998:566-573.
  • 10Patel V, Nasraba N, and Chellappa R. Sparsity-motivated automatic target recognition[J]. Applied Optics, 2011, 50(10): 1425-1433.

共引文献208

同被引文献63

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部