期刊文献+

经编机针床的轻量化设计研究 被引量:1

Lightweight Design of Needle Bar of Warp Knitting Machine
在线阅读 下载PDF
导出
摘要 采用空心针床截面结构替代实心结构,比较分析空心和实心针床结构与变形位移及应力之间的变化关系。采用非金属复合材料替代金属材料,比较不同属性材料对针床变形位移和应力的影响,分析空心针床截面主要结构参数与针床变形位移和应力之间的关系。结果表明,相同实体截面积空心针床的最大变形位移和最大应力比实心针床分别降低36.20%和64.50%;碳纤维(C)、玻璃纤维(G)、CG层内混杂、CG层间混杂、CF层内混杂5种非金属复合材料中,碳纤维复合材料的最大变形位移及最大应力均最小;计算案例中空心针床壁厚为3.25 mm时,最大变形位移及最大应力均最小。 The hollow needle bar cross section structure is adopted to replace the solid one, and the relationship between hollow needle bar’s deformation displacement and strength and that of solid needle bar is compared. Nonmetallic composites are used instead of metallic materials, and the effects of different materials on the deformation displacement and stress of the needle bar are compared. The relationship between the main structural parameters of hollow needle bar cross section and the deformation displacement and stress is analyzed.The results show that the maximum deformation displacement and stress of the hollow needle bar with the same cross-section area as the solid one are 36.2% and 64.50% lower than that of the solid needle bar respectively.Among carbon fiber(C), glass fiber(G), C/G intra-ply hybrid, C/G inter-laminar hybrid and C/F intra-ply hybrid,the maximum deformation displacement and stress of carbon fieber composite are both minimum. When the wall thickness of needle bar is 3.25 mm, the maximum deformation displacement and stress are both minimum.
作者 曹清林 常家树 邱睿 庄百亮 Cao Qinglin;Chang Jiashu;Qiu Rui;Zhuang Bailiang(Department of Mechanical Engineering,Jiangsu University of Technology,Changzhou,Jiangsu 213001,China;Jiangsu Institute,China Academy of Machinery&Technology Co.,Ltd.,Changzhou,Jiangsu 213164,China)
出处 《针织工业》 北大核心 2020年第5期14-18,共5页 Knitting Industries
基金 2018年国家科技重大专项项目(2018ZX04026001-008、2018ZX04026001-004)。
关键词 经编机 针床 轻量化设计 复合材料 变形位移 应力 Warp Knitting Machine Needle Bed Lightweight Design Composite Materials Deformation Displacement Stress
  • 相关文献

参考文献3

二级参考文献22

  • 1南孝荣.自动绘制经编机成圈运动曲线程序设计[J].天津纺织工学院学报,1989,10(1):90-95. 被引量:5
  • 2孟志华.ANSYS复合材料仿真分析及其在航空领域的应用.中国航空报,2004
  • 3Constantinos Minas, Lembit Salasoo. Three-dimensional thermal stresses in a superconducting coil assembly IEEE Transactions on magnetics, 1991;27(2):2381-2383
  • 4Kumar V, Shyu A, Quan D. Dynamic analysis of a light composite hull vehicle for transient loads during low velocity air drop. Twenty-Fourth Annual Computer Simulation Conference, 1992:725-728
  • 5Grando J, et al. Active damage control of composites materials studied under three-points bending.Proceedings of Topical Symposium VI on Intelligent Materials and Systems of the 8th CIMTEC-World Ceramics Congress and Forum on New Materials,1995:175-182
  • 6Ling J-X. Thermal stress analysis of air-cooled MRI gradient tube using FEA. Proceedings of the Pacific Rim/ASME International Intersociety Electronic and Photonic Packaging Conference, 1997;2:2145-2149
  • 7Akkas N, Toroslu R. Snap-through buckling analyses of composite shallow spherical shells. Mechanics of Composite Materials & Structures, 1999;6.(4):319-330
  • 8Figiel L, Kaminski M. Mechanical and thermal fatigue of curved composite beams. Proceedings of the Eighth International Conference on Civil and Structural Engineering Computing, 2001:153-154
  • 9Us S, Tolun S. Structural design and analysis of wind turbine rotor blades using laminated sandwich composites. Engineering, Construction and Operation in challenging environments:earth and space 20042004:492-498
  • 10冯怡,邱正明.高速槽针经编机成圈机构的研究[J].华东纺织工业学院学报,1984,10(4):29-37.

共引文献12

同被引文献23

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部