摘要
本文应用Floyd算法得到海南省十八个主要城镇任意两点之间的最短路径和最短距离,在已知医疗卫生物资供应点(中心点)的情况下,研究从中心点如何制定调配计划,向其余各城镇配送医疗卫生物资,使总的货运吨千米数达到最小,工程上达到最优调配.具体分三种情况,一个中心点(琼中),两个中心点(乐东和屯昌),三个中心点(昌江、定安和五指山),建立了有关的最优数学模型,合理估计了模型中有关参数,结合Lingo数学软件,分别获得三种情况下数学模型的数值结果,并进一步地,从理论上分三种情况分别建立了中心点位置未知情况下(不在十八个城镇)的最优化数学模型.
The Floyd algorithm is applied to calculate the shortest path and the shortest distance between any two of the 18 major towns in Hainan province.We strive to explore how to make an allocation plan to assign the medical and health supplies from the given center locations reserving these goods and materials to all other towns,such that the total ton-kilometre(ton.km)numbers of the freight transport is minimized and achieve an optimal allocation in engineering.We respectively consider three situations,one center location(town)-Qiongzhong;two center locations(towns)-Ledong and Tunchang;three center locations(towns)-Changjiang,Dingan and Wuzhishan,and establish the optimization models.The relevant parameters in the models are estimated reasonably,and the numerical results are obtained respectively by Lingo mathematical software in three cases.Furthermore,the optimization models are established similarly in the case of an unknown center point position(not in eighteen towns).
作者
胡晓华
水晶
张忠伟
HU Xiao-hua;BAYANMUNKH Bolormaa;ZHANG Zhong-wei(School of Mathematics and Statistics,Hainan Normal University,Haikou 571158;School of Engineering and Sciences,University of Southern Queensland,Toowoomba,QLD 4350)
出处
《工程数学学报》
CSCD
北大核心
2020年第3期335-346,共12页
Chinese Journal of Engineering Mathematics