摘要
利用气体发泡技术和高温快速碳化的方法制备了负载过渡金属NiCo金属粒子的N掺杂多孔碳结构作为Zn空气电池优异的双功能电催化剂。利用SEM、XRD、比表面积和孔径以及电化学工作站分别对负载NiCo金属粒子的多孔碳进行形貌、物相、比表面积和孔径以及电化学性能进行表征,最后组装成全电池进行充放电以及稳定性测试。结果表明,当镍源和钴源的质量比为1∶1,碳化温度为1000℃(Ni1/2Co1/2NCF-1000)的样品,不仅具有大的比表面积(1023.85 m2/g),而且其ORR半波电位(0.24V)仅比贵金属催化剂Pt/C的半波电位(0.21 V)低30 mV,OER的过电位为450 mV,远小于贵金属催化剂RuO2的过电位(480 mV)。Ni1/2Co1/2NCF-1000样品组装成Zn空气电池后其比容量和比能量分别达到827mAh·g-1和1013Wh·Kg-1,远大于贵金属催化剂Pt/C+RuO2的比容量和比能量(756 mAh·g-1和871 Wh·Kg-1)。
An N-doped porous carbon structure supported with transition metal NiCo metal particles was prepared by using gas foaming technology and high-temperature rapid carbonization as an excellent dual-function electrocatalyst for Zn air batteries.SEM,XRD,specific surface area and pore size,and electrochemical workstation were used to characterize the morphology,phase,specific surface area and pore size,and electrochemical performance of the porous carbon loaded with NiCo metal particles,and finally assembled into a full battery for charge and discharge and stability test.The results show that when the mass ratio of nickel source and cobalt source was 1:1 and the carbonization temperature was 1000℃(Ni1/2Co1/2NCF-1000),the sample not only had a large specific surface area(1023.85 m2/g),but also its ORR half-wave potential(0.24 V)was only 30 mV lower than the half-wave potential(0.21V)of the noble metal catalyst Pt/C,and the OER overpotential was 450mV,which was much smaller than the noble metal catalyst RuO2 overpotential(480 mV).After the Ni1/2Co1/2NCF-1000 sample was assembled into a Zn air battery,its specific capacity and specific energy reach 827 mAh/g and 1013 Wh/kg,respectively,which were much larger than the specific capacity and specific energy of the precious metal catalyst Pt/C+RuO2(756 mAh/g and 871 Wh/kg).
作者
姬忠军
李生娟
马占宇
储筱曼
李诗婷
吴明霞
JI Zhongjun;LI Shengjuan;MA Zhanyu;CHU Xiaoman;LI Shiting;WU Mingxia(School of Materials Science& Engineering, University of Shanghai for Science and Technology,Shanghai 200093, China;Shanghai Aowei Technology Development Co., Ltd., Shanghai 201203, China)
出处
《功能材料》
EI
CAS
CSCD
北大核心
2020年第6期6012-6021,共10页
Journal of Functional Materials
基金
国家自然科学基金资助项目(51402192)。