期刊文献+

基于高斯过程回归的UKF锂离子电池SOC估计 被引量:6

SOC estimation of Li-ion batteries based on Gaussian process regression and UKF
在线阅读 下载PDF
导出
摘要 高精度的电池荷电状态估计是电动汽车电池管理系统的关键技术之一,其估计精度直接影响能量管理效率和汽车的续航里程。传统的滤波方法基于模型来估计电池SOC,但难以建立锂离子电池精确的数学模型。针对此问题,提出一种基于高斯过程回归的无迹卡尔曼滤波(UKF)锂离子电池SOC估计方法,使用高斯过程回归在有限的训练数据下建立等效电路模型的测量方程,在UKF和高斯过程回归之间建立关联。该模型能够充分联合利用现有实验数据和被预测实时状态数据,实现SOC估计。结果表明,与传统UKF相比,基于高斯过程回归的UKF算法具有较高精确性。 The high-precision state-of-charge(SOC)estimation of battery power capacity is the key technology associated with a battery management system,and its estimation accuracy directly influences the energy management efficiency and endurance mileage of electric vehicles.The traditional filter estimation method uses an estimation model and does not consider the accuracy model of a Li-ion battery.To solve this problem,an unscented Kalman filter(UKF)estimation method based on Gaussian process regression(GPR)is presented.GPR can be used to establish a measurement equation for an equivalent circuit model with limited training data,resulting in the connection of UKF and GPR.The proposed model optimally uses the data obtained via the tests and the current to estimate the SOC.The experimental results and comparative analysis of the UKF estimation method based on Gaussian process regression demonstrate the high prediction accuracy of the proposed algorithm during SOC estimation.
作者 魏孟 李嘉波 李忠玉 叶敏 徐信芯 WEI Meng;LI Jiabo;LI Zhongyu;YE Min;XU Xinxin(Highway Maintenance Equipment National Engineering Laboratory,Changan University,Xi'an 710064,Shaanxi,China;Henan Gaoyuan Highway Maintenance Technology Co.Ltd.,Xinxiang 453000,Henan,China)
出处 《储能科学与技术》 CAS CSCD 2020年第4期1206-1213,共8页 Energy Storage Science and Technology
基金 国家自然科学基金青年项目(51805041) 河南省交通运输厅科技计划项目(2019J3)。
关键词 动力电池 荷电状态 高斯过程回归 UKF power battery state of charge Gaussian process regression UKF
  • 相关文献

参考文献9

二级参考文献68

  • 1裴锋,黄向东,罗玉涛,赵克刚.电动汽车动力电池变流放电特性与荷电状态实时估计[J].中国电机工程学报,2005,25(9):164-168. 被引量:50
  • 2王军平,陈全世,曹秉刚,康龙云.电动车用镍氢电池模块的充放电模型研究[J].西安交通大学学报,2006,40(1):50-52. 被引量:7
  • 3林成涛,仇斌,陈全世.电动汽车电池非线性等效电路模型的研究[J].汽车工程,2006,28(1):38-42. 被引量:47
  • 4Plett G L. Extended kalman filtering for battery management systems of LiPB-based HEV battery packs part 1 background[J].{H}Journal of Power Sources,2004,(134):252-261.
  • 5Meissner E,Richter G. The challenge to the automotive battery industry:the battery has to become an increasingly integrated component within the vehicle electric power system[J].{H}Journal of Power Sources,2005,(02):438-460.
  • 6Ng K S,Moo C S,Chen Y P. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries[J].{H}Applied Energy,2009,(09):1506-1511.
  • 7Remmlinger J,Buchholz M,Meiler M. State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation[J].{H}Journal of Power Sources,2001,(12):5357-5363.
  • 8Aylor J H,Thieme A,Johnson B W. A battery state of charge indicator for electric wheelchairs[J].{H}IEEE Transactions on Industrial Electronics,1992,(05):398-409.
  • 9Plett G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs part 2 modeling and identification[J].{H}Journal of Power Sources,2004,(134):262-276.
  • 10Plett G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs part 3 state and parameter estimation[J].{H}Journal of Power Sources,2004,(134):277-292.

共引文献229

同被引文献55

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部