期刊文献+

基于嵌入式设备与深度学习模型的智能小车的设计与研究 被引量:3

Design and Research of Intelligent Vehicle Based on Embedded Device and Deep Learning Model
在线阅读 下载PDF
导出
摘要 近年来,深度学习凭借其在识别应用中超高的预测准确率,在图像处理领域获得了极大关注,这势必提升现有图像处理系统的性能并开创新的应用领域。本文在充分研究深度学习常用模型和技术框架等最新热点前提下,基于树莓派、Arduino这两种嵌入式设备,设计了一款实现物体识别与追踪的智能小车机器人。该智能小车通过搭载在智能小车上的摄像头采集数据,利用计算机视觉的目标识别与追踪模型计算出被跟踪物体的位置信息,在目标物体移动的过程中,通过嵌入式设备分析位置数据计算出控制命令来操控智能小车实现目标跟踪。 In recent years,deep learning has attracted great attention in the field of image processing due to its high prediction accuracy in recognition applications,which is bound to improve the performance of existing image processing systems and create new application fields.On the premise of fully studying the common models and technical frameworks of deep learning and other latest hot spots,this paper designs an intelligent robot car for object recognition and tracking based on two embedded devices,raspberry PI and Arduino.The smart car using cameras to collect data on the smart car,target recognition and tracking using computer vision model to calculate the location information of tracked objects,in the process of moving target object,through the analysis of the embedded devices location data to calculate the control commands to control the smart car to realize target tracking.
作者 耿韶光 GENG Shao-guang(Tianjin Electronic Information College,Tianjin 300350)
出处 《数字技术与应用》 2020年第5期161-162,共2页 Digital Technology & Application
关键词 树莓派 ARDUINO 深度学习 目标跟踪 raspberry pie Arduino deep learning object tracking
  • 相关文献

参考文献4

二级参考文献27

共引文献117

同被引文献12

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部