期刊文献+

基于小波包能量谱和改进FOA-GRNN的轴承寿命预测 被引量:7

Prediction Method of Bearing Remaining Useful Life Based on Wavelet Packet Energy Spectrum and Improved FOA-GRNN
在线阅读 下载PDF
导出
摘要 为增强轴承退化特征信息,提高广义回归神经网络(Generalized Regression Neural Network, GRNN)的预测精度,提出了一种基于小波包能量谱和改进FOA-GRNN的轴承剩余使用寿命预测方法。首先,为提取和增强轴承退化特征,采取小波包能量谱对轴承振动信号进行分解,生成频带能量谱,以能量谱信息构建轴承退化特征;其次,为提高果蝇优化算法(Fruit Fly Optimization Algorithm, FOA)的寻优能力和寻优效率,提出了一种多种群自适应果蝇优化算法,引入自适应惯性权重,并应用于广义回归神经网络参数优化;实验结果表明,基于文中退化特征相比时域、频域特征,提高了预测精度,改进FOA-GRNN与FOA-GRNN、MFOA-GRNN、IFOA-GRNN相比具有较高的寻优精度和寻优效率。 In order to enhance the degradation characteristics information of bearings and improve the prediction accuracy of the generalized regression neural network(GRNN), a prediction method of bearing remaining useful life based on wavelet packet energy spectrum and improved FOA-GRNN is proposed. Firstly, to extract and enhance the degradation characteristics of bearing, the wavelet packet energy spectrum is used to decompose the bearing vibration signal to generate the frequency band energy spectrum and energy spectrum information is used to construct degradation characteristics of bearing. Secondly, in order to improve the optimization ability and efficiency of fruit fly optimization algorithm, an adaptive multi-population fruit fly optimization algorithm is designed, and it is applied to the parameter optimization of generalized regression neural network. Finally, the experimental results show that it has higher prediction accuracy based on the degradation characteristics of the paper compare with the time domain and frequency domain. The improved FOA-GRNN has higher optimization accuracy and efficiency than FOA-GRNN, MFOA-GRNN, IFOA-GRNN.
作者 张成龙 郑凯 刘杰 ZHANG Cheng-long;ZHENG Kai;LIU Jie(Department of Brewing Engineering Automation,Moutai Institute,Renhuai Guizhou 564500,China;School of Mines anf Civil Engineering,Liupanshui Normal University,Liupanshui Guizhou 553004,China)
出处 《组合机床与自动化加工技术》 北大核心 2020年第7期73-76,80,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 贵州省教育厅青年科技人才成长项目(黔教合KY字[2018]458) 六盘水师范学院校级科研项目(LPSSY201909)。
关键词 轴承 剩余使用寿命 小波包能量谱 广义回归神经网络 果蝇优化算法 预测 bearing remaining useful life wavelet packet energy spectrum generalized regression neural network fruit fly optimization algorithm prediction
  • 相关文献

参考文献7

二级参考文献63

  • 1张勇,赵晓群.基于线性预测模型的氦语音增强算法研究[J].声学技术,2007,26(1):111-116. 被引量:3
  • 2SOUALHI A, MEDJAHER K, ZERHOUNI N. Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(1): 52-62.
  • 3NIZAM M, MOHAMED A, HUSSAIN A. Dynamic voltage collapse prediction in power systems using support vector regression[J]. Expert Systems with Applications, 2010, 37(5): 3730-3736.
  • 4TRAN V T, THOM PHAM H, YANG B S, et al. Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine[J]. Mechanical Systems and Signal Processing, 2012, 32: 320-330.
  • 5TIPPING M E. The relevance vector machine[J]. Advances in Neural Information Processing Systems, 2000, 12.- 652-658.
  • 6TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. The Journal of Machine Learning Research, 2001, 1: 211-244.
  • 7CAESARENDRA W, WIDODO A, YANG B S. Application of relevance vector machine and logistic regression for machine degradation assessment[J]. Mechanical Systems and Signal Processing, 2010, 24(4): 1161-1171.
  • 8WIDODO A, YANG B S. Application of relevance vector machine and survival probability to machine degradation assessment[J]. Expert Systems with Applications, 2011, 38(3): 2592-2599.
  • 9DOUCET A, DE FREITAS N, GORDON N. Sequential Monte Carlo methods in practice[M]. New York: Springer, 2001.
  • 10SMITS G F, JORDAAN E M. Improved SVM regression using mixtures of kernels[C]//IEEE International Joint Conference on Neural Networks, May 12-17, 2002, Honolulu, HI. IEEE, 2002, 3: 2785-2790.

共引文献124

同被引文献58

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部