期刊文献+

高压软管试验台自动夹紧装置研究 被引量:1

Research on Auto-clamping Device for High-pressure Hose Testbed
在线阅读 下载PDF
导出
摘要 从检验要求、机构设计及夹紧力分析等方面,阐述了高压软管耐压与气密性能试验台的设计过程,为了保证在多种通径软管接头的情况下,试验时不发生泄漏现象,在夹具的夹紧端面采用多圈同心圆矩形沟槽密封,以压入式液压自动夹紧方式取代手动法兰连接方式,并对液压夹紧力进行计算与分析,得出在软管最大通径100mm时,所需液压夹紧力最大,液压缸所需提供的最小工作压力约为13.4MPa。试验结果表明:与现有法兰连接方式相比,在规定试验压力下,该试验台装置无泄漏现象,自动化程度高,软管平均检验效率提高约49.4%。 Starting with analyzing the inspection requirements,mechanism design and clamping force,both design and construction process of the testbed for high pressure hose’s pressure resistance and air tightness performance were expounded. For purpose of eradicating the leakage which occurred in the test where various diameter hose joints exist,having the clamping end face of the clamp sealed with a multi-circle concentric rectangular groove was designed. Calculating and analyzing the hydraulic clamping force showed that,for the hose’s maximum diameter of 100 mm,the required hydraulic clamping force is the largest and the minimum working pressure of hydraulic cylinder is about 13.4 MPa. The test results showed that,compared with the existing flange connection method,the testbed has no leakage at a specified test pressure along with high degree of automation and the hose’s average inspection efficiency can be increased by about 49.4%.
作者 李超 朱海清 刘明亮 LI Chao;ZHU Hai-qing;LIU Ming-liang(College of Mechanical Engineering,Jiangnan University)
出处 《化工机械》 CAS 2020年第3期302-305,310,共5页 Chemical Engineering & Machinery
关键词 高压软管 试验台 夹紧装置 耐压与气密 high pressure hose testbed clamping device pressure resistance and air tightness
  • 相关文献

参考文献2

二级参考文献10

  • 1马继春,宁建,马良.水泵试验台快速夹紧机构的研制[J].农业装备与车辆工程,2007,45(2):17-19. 被引量:3
  • 2刘银水,廖义德,姜静,唐群国.阻尼器试验台架液压夹紧装置的分析设计[J].武汉理工大学学报,2007,29(7):110-113. 被引量:3
  • 3Nomura M,Suzuki M, Hori M, et al. Decoupling torque control system for automotive engineer tester[J]. IEEE Transactions on Industry Applications ,2000,36 ( 2 ) : 467 - 474.
  • 4Justin W R, Kazerooni H. Analysis and design of a novel hydraulic power source for mobile robots[ J I. IEEE Transactions on Automation Science and Engineering, 2005,2(3) : 226 -232.
  • 5Lee K O,Hur Y M, Kang J H,et al. Performance estimation of wipers for hydraulic cylinders and optimization of geometric design variables [ J ]. Journal of Materials Technology, 2007,187:215 - 219.
  • 6Chin J H, Sun Y H, Cheng Y M. Force computation and continuous path tracking for hydraulic parallel manipulators[ J]. Control Engineering Practice, 2008,16 : 697 - 709.
  • 7Bilodeau G,Papadopoulos E. A model-based impedance control scheme for high-performance hydraulic joints [ C ]//Proceedings of the 1998 IEE/RSJ Intl. Conference on Intelligent Robots and Systems Victoria, B. C, Canada: [s. n.]1998.
  • 8尤亚峰,马新华,李乔军,肖开华.基于PLC的水泵试验台电动阀门PI控制的实现[J].排灌机械,2007,25(4):50-53. 被引量:8
  • 9SMC(中国)有限公司.现代实用气动技术[M].北京:机械工业出版社,1999..
  • 10朱本坤.基于单片机的模糊PID恒压供水控制系统[J].排灌机械,2008,26(1):43-46. 被引量:6

共引文献14

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部