摘要
对含体积分数3%TiB_w增强相的近α高温钛基复合材料进行不同应变速率(0.01~0.10s-1)与变形量(30%~70%)的单道次单向锻造以及多向锻造,研究锻造工艺对复合材料显微组织的影响。结果表明:不同应变速率下单向锻造后,复合材料中TiB_w增强相垂直于锻造方向均匀分布,随着应变速率的增加,TiB_w增强相的破碎程度增大,等轴α相的含量降低,层片状α相和β转变组织的含量增加;随着变形量的增加,TiB_w增强相被碎程度增大,其定向排列的趋势更加明显,等轴α相含量增加,层片状α相和β转变组织的含量降低。多向锻造后,TiB_w增强相破碎,但分布无明显取向,基体组织为层片状α相和β转变组织;多向锻造态复合材料的屈服强度、抗压强度分别为1512,1802 MPa,比铸态复合材料的分别提高了15.4%,5.9%。
Nearαhigh-temperature titanium matrix containing 3 vol%TiBwreinforcement was treated by single pass unidirectional forging with different strain rates(0.01-0.10 s-1)and deformation amount(30%-70%)and multi-directional forging.Then the influence of forging process on the microstructure of the composite was studied.The results show that after unidirectional forging with different strain rates,TiBw reinforament in composite distributed evenly perpendicular to the forging direction;the fragmentation degree of TiBwreinforcement increased with increasing strain rate;the content of equiaxedαphase decreased,and the content of lamellarαphase andβtransition structure increased.After multi-directional forging,the fragmentation of TiBw reinforcement increased,and the directional alignment tendency was more obvious with increasing deformation amount;the content of equiaxedαphase increased,and the content of lamellarαphase andβtransformed structure decreased.The TiBwreinforcement in the matrix was broken after multi-directional forging,but the distribution had no obvious orientation;the matrix structure consisted of lamellarαphase andβtransition structure;the yield strength and compressive strength of multi-directional as-forged composite were 1512,1802 MPa,whichwere15.4%and5.9%higher than those of as-cast composite.
作者
田玉晶
孙世臣
胡辰
方晓英
赵而团
TIAN Yujing;SUN Shichen;HU Chen;FANG Xiaoying;ZHAO Ertuan(School of Mechanical Engineering,Shandong University of Technology,Zibo 255022,China)
出处
《机械工程材料》
CAS
CSCD
北大核心
2020年第7期12-17,共6页
Materials For Mechanical Engineering
基金
山东省自然科学基金资助项目(ZR2017MEE038)
周村区校城融合项目(2020ZCXCZH03)。
关键词
钛基复合材料
锻造
应变速率
变形量
显微组织
titanium matrix composite
forging
strain rate
deformation amount
microstructure