期刊文献+

基于遗传-拟牛顿混合算法的地下震源定位

Underground source location based on genetic-quasi-Newton hybrid algorithm
在线阅读 下载PDF
导出
摘要 为了用多传感器网络解决震源的定位问题,采用脉冲耦合时钟同步算法,同步所有传感器网络节点时钟,在此基础上,测出震源发出的脉冲信号到达各个节点的时间差。结合遗传算法的全局寻优能力和拟牛顿算法的快速局部搜索能力,提出遗传-拟牛顿混合算法的到达时间差定位方法。为了验证该混合算法的精确性,使用MATLAB分别对拟牛顿算法与遗传-拟牛顿混合算法的横轴和纵轴进行仿真,通过对比,证明了遗传-拟牛顿混合算法收敛速度快、精确度高、稳定性好。 In order to solve the problem of location of the source by using a multi-sensor network,the pulse-coupled clock synchronization algorithm was used to synchronize the clocks of all sensor network nodes,and the time differences of arrivals of the pulse signals sent by the source to each node were measured on the basis of the clock synchronization of each node.Then,combining with the global optimization ability of genetic algorithm and the fast local search ability of quasi-Newton algorithm,the method of localization of the time differences of arrivals for genetic-quasi-Newton hybrid algorithm was proposed.In order to verify the accuracy of the hybrid algorithm,the MATLAB was used to simulate the horizontal and vertical axes of the quasi-Newton algorithm and the genetic-quasi-Newton hybrid algorithm respectively.Through comparison,it was proved that the genetic-quasi-Newton hybrid algorithm had fast convergence,high precision and good stability.
作者 宋运忠 王仁辉 SONG Yunzhong;WANG Renhui(School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454000,Henan,China)
出处 《河南理工大学学报(自然科学版)》 CAS 北大核心 2020年第4期88-93,共6页 Journal of Henan Polytechnic University(Natural Science)
基金 国家自然科学基金资助项目(61340041,61374079) 河南省自然科学基金资助项目(182300410112)。
关键词 震源定位 脉冲耦合时钟同步 到达时间差 遗传-拟牛顿混合算法 source location pulse-coupled clock synchronization time difference of arrival genetic-quasi-Newton hybrid algorithm
  • 相关文献

参考文献5

二级参考文献36

  • 1曾毅.浮点遗传算法在非线性方程组求解中的应用[J].华东交通大学学报,2005,22(1):152-155. 被引量:20
  • 2李海成.基于传声器阵列的自动声源定位方法[J].辽宁师范大学学报(自然科学版),2006,29(2):168-171. 被引量:6
  • 3吴国辉,代冀阳,吴印华,朱国民.一种新的求解非线性方程组的混合遗传算法[J].南昌航空工业学院学报,2007,21(1):5-9. 被引量:6
  • 4Daniel J W. Newton method of nonlinear inequalities [J]. Numer Math, 1973, 21: 381--387.
  • 5Mayne D Q, Polak E, Heunis A J. Solving nonlinear inequalities in a finite number of iterations [J]. J Optim Theory Appl,1981, 33: 207--221.
  • 6Kanzow C, Pieper H. Jacobian smoothing methods for nonlinear complementarity problems [J]. SIAM Journal on Optimization, 1999 (9) : 342--373.
  • 7Ma Changfeng. A globally convergent Levenberg-Marquardt method for the least 12-norm solution of nonlinear inequalities [J]. Applied Mathematics and Computation, 2008 (206): 133--140.
  • 8Karr C L. Solutions to systems of nonlinear equations via a genetic algorithm [J]. Engineering Applications of Artificial Intelligence,1998, 11 (3): 369--375.
  • 9YOUN D H, AHMED N, CARTER G C. On using the LMS algorithm for time delay estimation[J]. IEEE Transactions on Acoustics,Speech Signal Processing, 1982,30(5) 798-801.
  • 10MURTHY P S, YEGNANARAYANA B. Robustness of group-delay-based method for extraction of significant instants of excitation from speech signals[J]. IEEE Trans. Speech Audio Processing, 1999,7(6):609-619.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部