期刊文献+

基于冲突预测的多自动导引小车避碰决策优化 被引量:15

Multi-AGV conflict avoidance decision optimization method based on conflict prediction
在线阅读 下载PDF
导出
摘要 为有效解决路径冲突和避碰问题,提高多自动导引小车(AGV)系统的作业效率,提出基于冲突预测的多AGV避碰决策优化方法。结合图论提出一种基于顶点属性和实时位姿信息的冲突预测方法,在考虑路网全局状态的基础上建立避碰决策的数学评价模型,提出一种适用于多AGV系统避碰决策优化的改进粒子群优化算法,通过优化粒子运动的速度和方向避免优化算法过早收敛。采用融合遗传算法的变异思想为粒子引入变异操作,改善优化算法的全局搜索能力。最后通过实验测试表明,该优化方法可以有效解决多AGV系统路径冲突问题,还能缩短避碰过程中AGV的等待总时长,提高多AGV系统运行的安全性与效率。 To solve the path conflict and avoidance problem and improve the operational efficiency of multi-AGV system,an optimization method of multi-AGV conflict avoidance decision based on conflict prediction was proposed.A conflict prediction method based on vertex attributes and real-time pose was proposed.Considering the global state of the road network,the mathematical evaluation model of conflict avoidance decision was established,and an Improved Particle Swarm Optimization(IPSO)algorithm for multi-AGV system was proposed.By optimizing the speed and direction of particle motion,the premature convergence of optimization algorithm was avoided.In addition,the mutation operation was introduced into the particle by fusing the mutation idea of Genetic Algorithm(GA)to improve the global search ability of the optimization algorithm.The experimental results showed that the optimization method could solve the multi-AGV system path conflict problem effectively and reduce the total waiting time of AGVs in the process of conflict avoidance.Accordingly,the security and operation efficiency of multi-AGV system were improved.
作者 曹小华 朱孟 CAO Xiaohua;ZHU Meng(School of Logistics Engineering,Wuhan University of Technology,Wuhan 430063,China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2020年第8期2092-2098,共7页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(61503291) 武汉理工大学优秀硕士学位论文培育资助项目(2018-YS-070)。
关键词 多自动导引小车 冲突预测 顶点属性 改进粒子群优化算法 multi-AGV conflict prediction vertex attributes improved particle swarm optimization
  • 相关文献

参考文献7

二级参考文献48

  • 1朱勇,周国标.一类改进的蚁群算法及其收敛性分析[J].兰州理工大学学报,2006,32(2):82-85. 被引量:2
  • 2姜昌华,戴树贵,胡幼华.求解车辆路径问题的混合遗传算法[J].计算机集成制造系统,2007,13(10):2047-2052. 被引量:33
  • 3HO Y C,LIAO T W.Zone design and control for vehicle collision prevention and load balancing in a zone control AGV system[J].Computers & Industrial Engineering,2009,56(1):417-432.
  • 4SMOLIC-ROCAK N,BOGDAN S,KOVACIC Z,et al.Time windows based dynamic routing in multi-AGV systems[J].IEEE Transactions on Automation Science and Engineering,2010,7(1):151-155.
  • 5MAZA S,CASTAGNA P.A performance-based structural policy for conflict-free routing of bi-directional automated guided vehicles[J].Computers in Industry,2005,56 (7):719-733.
  • 6SRIVASTAVA S,CHOUDHARY A,KUMAR S,et al.Development of an intelligent Agent-based AGV controller for a flexible manufacturing system[J].International Journal of Advanced Manufacturing Technology,2008,36(7/8):780-797.
  • 7EROL R,SAHIN C,BAYKASOGLU A,et al.A multi-Agent based approach to dynamic scheduling of machines and automated guided vehicles in manufacturing systems[J].Applied Soft Computing,2012,12(6):1720-1732.
  • 8NISHI T,MORINAKA S,KONISHI M.A distributed routing method for AGVs under motion delay disturbance[J].Robotics and Computer-Integrated Manufacturing,2007,23(5):517-532.
  • 9GHASEMZADEH H,BEHRANGI E,ABDOLLAHI AZGOMI M.Conflict-free scheduling and routing of automated guided vehicles in mesh topologies[J].Robotics and Autonomous Systems,2009,57(6/7):738-748.
  • 10NELSON R T,HOLLOWAY C A,MEI-LUN W R.Centralized scheduling and priority implementation heuristics for a dynamic job shop model[J].AIIE Transactions,1977,9 (1):95-102.

共引文献170

同被引文献139

引证文献15

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部