期刊文献+

输电线巡检机器人动力学建模与DME评价 被引量:13

Dynamic Modeling and DME Evaluation of Power Transmission Line Inspection Robots
在线阅读 下载PDF
导出
摘要 以新设计的输电线巡检机器人为具体研究对象,采用D-H法推导出机器人的雅可比矩阵;然后建立输电线巡检机器人的Lagrange动力学模型,进而依据机器人动力学模型求得输电线巡检机器人的操作臂惯性矩阵,提出了基于操作臂惯性矩阵所建立的机器人动力学评价指标:动态可操作性椭球(DME:dynamic operability ellipsoid)评价指标;最后结合逆运动学的反解,建立了不同空间轨迹坐标下的动态可操作性衡量指标,获得机器人动力学性能最佳的越障轨迹.通过机器人跨越绝缘子障碍的实验证明了所提动力学评价方法的有效性. Taking the newly designed power transmission line inspection robot as the specific research object,the Jacobian matrix of the robot was derived using the D-H method and then the Lagrange dynamic model of the power transmission line inspection robot was established.The inertial matrix of the operating arm of the robot was obtained with the dynamic model,and the evaluation indexes of robot dynamics were put forward based on the inertial matrix of the operating arm-dynamic operability ellipsoid(DME)evaluation index.Finally,combined with the inverse solution of inverse kinematics,dynamic maneuverability indexes under different spatial trajectory coordinates were established,and the obstacle trajectory with the best robot dynamic performance was obtained.Experiments of robots crossing insulator barriers proved the effectiveness of the proposed dynamic evaluation method.
作者 李小彭 尚东阳 李凡杰 曹伟龙 LI Xiao-peng;SHANG Dong-yang;LI Fan-jie;CAO Wei-long(School of Mechanical Engineering&Automation,Northeastern University,Shenyang 110819,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第9期1280-1284,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(51875092) 中央高校基本科研业务费专项资金资助项目(N170302001)。
关键词 巡检机器人 Lagrange动力学 动态可操作性椭球(DME) 越障轨迹 动力学评价方法 inspection robot Lagrange dynamics dynamic operability ellipsoid(DME) obstacle trajectory dynamic evaluation method
  • 相关文献

参考文献3

二级参考文献18

  • 1石志新,罗玉峰,陈红亮,叶梅燕.机器人机构的全域性能指标研究[J].机器人,2005,27(5):420-422. 被引量:32
  • 2VINOGRADOV I B, KOBRINSKI A E K, STEPANENKO Y E. Details of kinematics of manipulators with the method of bolumes[J]. Mekhanika Mashin, 1971, 27(28): 5-16.
  • 3KUMAR A V, WALDRON K J. The workspace of a mechanical manipulator[J]. ASME J. Mech. Design, 1981, 103(3): 665-672.
  • 4SALISBURY J K, CRAIG J J. Articulated hands: force control and kinematics issues[J]. Int. J. of Robot, 1982, 1(1). 4-17.
  • 5YOSHIKAWA T. Manipulability of robotic mechanisms [J]. J. of Robot, 1985, 4(2): 3-9.
  • 6YANG D C, LAI Z C. On the conditioning of robotic manipulators-service angle[J]. ASME J. Mechanisms, 1985, 107, 262-270.
  • 7ANGELES J, LOPEZ-CAJUN C. Kinematic isotropy and the conditioning index of serial robotic manipulators[J]. The International Journal of Robotics Research, 1992, 11(6): 560-571.
  • 8GOSSELIN C, ANGELES J. A global performance index for the kinematic optimization of robotic manipulators[J] Transactions of the ASME, 1991, 113: 220-226.
  • 9GUO Xijuan, CHANG F Q. Acceleration and dexterity performance indices for 6-DOF and lower-mobility parallel mechanism[J]. ASME 2004 DETC, 2004, 4: 851-855.
  • 10GUO Xijuan, LIU Shuang. Analysis for dynamics performance indices of 4 - RR(RR)R parallel mechanism[J]. International Journal of Innovative Computing Information and Control, 2006, 2(4): 849-862.

共引文献33

同被引文献128

引证文献13

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部