期刊文献+

基于节点通信度的信息加权一致性滤波 被引量:4

Information weighted consensus filter algorithm based on node communication degree
在线阅读 下载PDF
导出
摘要 协同目标跟踪是无人机集群等多传感器网络的典型应用。在分布式传感器网络目标跟踪过程中,目标状态估计的一致性直接影响到跟踪有效性。针对目标跟踪过程中网络节点之间一致性迭代次数受限的问题,提出了一种基于节点通信度的信息加权一致性滤波算法,设计了用节点通信度来充分衡量传感器节点在网络中的通信拓扑状况,并构建了非对称一致性权值的选取机制,可在复杂拓扑结构网络中实现快速一致性跟踪。典型目标跟踪场景仿真验证表明,所提算法相比经典的信息加权一致性滤波算法,目标跟踪的不一致程度降低了20%以上,有效提升了分布式跟踪的一致性速度。 Collaborative target tracking is one of the most typical applications of multi-sensor network including unmanned aerial vehicle swarm.In the process of target tracking in distributed sensor network,the consensus of target state estimation directly affect the tracking effectiveness.Aiming at the problem of limited consensus iteration number among network nodes in the process of target tracking,an information weighted consensus filtering algorithm based on node communication degree is proposed.The node communication degree is designed to fully measure the communication topology of sensor nodes in the network.And then,a selection mechanism of asymmetric consensus weights is constructed to achieve fast consensus tracking in the complex topology network structure.It is verified by the simulation of typical target tracking scene,compared with the classical information weighted consensus filtering algorithm,the proposed algorithm reduces the degree of disagreements of target tracking by more than 20%,and effectively improves the consensus speed of distributed tracking.
作者 丁自然 刘瑜 曲建跃 姜乔文 简涛 DING Ziran;LIU Yu;QU Jianyue;JIANG Qiaowen;JIAN Tao(Institute of Information Fusion, Naval Aviation University, Yantai 264001, China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2020年第10期2181-2188,共8页 Systems Engineering and Electronics
基金 国家自然科学基金(61671463,61790550,91538201,61531020,61971432,61790551) 山东省泰山学者工程(tsqn201909156) 山东省高等学校青创科技支持计划(2019KJN031)资助课题。
关键词 分布式传感器网络 目标跟踪 一致性估计 通信拓扑 节点通信度 distributed sensor network target tracking consensus estimation communication topology node communication degree
  • 相关文献

参考文献5

二级参考文献61

  • 1Xiao L, Boyd S, Lull S. A scheme for robust distributed sensor fusion based on average consensus[C]//Proceedings of the 4th International Symposium on Information Processing in Sensor Networks. Piscataway, NJ, USA: IEEE, 2005: 63-70.
  • 2Lopes C G, Sayed A H. Incremental adaptive strategies over distributed networks[J]. IEEE Transactions on Signal Processing, 2007, 55 (8): 4064-4077.
  • 3Schizas I D, Ribeiro A, Giannakis G B. Consensus in ad hoc WSNs with noisy links - Part I: Distributed estimation of deterministic signals[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 350-364.
  • 4Zhao T, Nehorai A. Information-driven distributed maximum likelihood estimation based on Gauss-Newton method in wireless sensor networks[J]. IEEE Transactions on Signal Processing, 2007, 55(9): 4669-4682.
  • 5Lynch N A. Distributed algorithms[M]. San Francisco, CA, USA: Morgan Kaufmann Publishers, 1996.
  • 6Ren W. Formation keeping and attitude alignment for multiple spacecraft through local interactions[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 633-638.
  • 7Ren W. Trajectory tracking control for miniature fixed-wing unmanned air vehicles[J]. International Journal of Systems Science, 2007, 38(4): 361-368.
  • 8Xiao L, Boyd S. Fast linear iterations for distributed averaging[J]. Systems and Control Letters, 2004, 53(1): 65-78.
  • 9Kokiopoulou E, Frossard P, Gkorou D. Optimal polynomial filtering for accelerating distributed consensus[C]// Proceedings of the IEEE International Sympious on Information Theory. Piscataway, NJ, USA: IEEE, 2008: 657-661.
  • 10Talebi M S, Kefayati M, Khalaj B H, et al. Adaptive consensus averaging for information fusion over sensor networks[C]//Proceedings of the IEEE International Conference on Mobile Ad Hoc and Sensor Systems. Piseataway, NJ, USA: IEEE, 2006: 562-565.

共引文献29

同被引文献37

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部