摘要
在乘型一致性区间值模糊偏好关系和乘型一致性直觉模糊偏好关系启发下,研究了乘型一致性毕达哥拉斯模糊偏好关系。首先,将毕达哥拉斯模糊偏好关系转化为两个等价的区间值模糊偏好关系,通过区间值模糊偏好关系的乘型一致性,定义了毕达哥拉斯模糊偏好关系的乘型一致性。其次,研究了乘型一致性毕达哥拉斯模糊偏好关系的若干性质。然后,研究了毕达哥拉斯模糊偏好关系的排序向量,以及求解乘型一致性和非乘型一致型毕达哥拉斯模糊偏好关系排序向量的方法。最后,通过实例说明了求解排序向量的方法是可行有效的。
Inspired by multiplicative consistent interval-valued fuzzy preference relation and multiplicative consistent intuitionistic fuzzy preference relation, Pythagorean fuzzy preference relation(PFPR) based on multiplicative consistency is researched. The two equivalent interval-valued fuzzy preference relation of PFPR are introduced. Based on the multiplicative consistency of interval-valued fuzzy preference relation, the PFPR based on multiplicative consistency is defined. Then, some properties of multiplicative consistent PFPR are also discussed. And priority vector of PFPR is discussed and methods for deriving the priority vectors of multiplicative consistent PFPR and non-multiplicative consistent PFPR are built. Lastly, a numerical example is given to the feasibility and effectiveness of the proposed methods.
作者
何霞
刘卫锋
刘万里
HE Xia;LIU Wei-feng;LIU Wan-li(School of Mathematics,Zhengzhou University of Aeronautics,Zhengzhou 450046,China)
出处
《模糊系统与数学》
北大核心
2020年第4期133-144,共12页
Fuzzy Systems and Mathematics
基金
国家自然科学基金资助项目(11501525)
河南省高等学校重点科研项目(18A110032,20A110035)。
关键词
毕达哥拉斯模糊集
毕达哥拉斯模糊偏好关系
乘型一致性
决策
Pythagorean Fuzzy Set
Pythagorean Fuzzy Preference Relation
Multiplicative Consistency
Decision Making