期刊文献+

基于序贯三支决策的代价敏感文本情感分析方法 被引量:9

Cost-Sensitive Text Sentiment Analysis Based on Sequential Three-Way Decision
在线阅读 下载PDF
导出
摘要 为了解决文本情感分析的代价不平衡及静态决策中分类代价偏高的问题,文中考虑动态决策过程中产生的误分类代价和学习代价,构建基于序贯三支决策的代价敏感文本情感分析方法.首先,为了构建多粒度动态决策环境,提出针对文本数据的粒化模型.然后,引入序贯三支决策模型,构建动态文本分析框架.最后,利用真实文本评论数据集验证文中方法的有效性.实验表明文中方法在提高分类质量的同时,明显降低整体的决策代价. To solve the problems of cost imbalance in text sentiment analysis and high classification cost in static decision-making,a cost-sensitive text sentiment analysis method is constructed based on sequential three-way decision,and the misclassification cost and learning cost in dynamic decision-making process are taken into account.Firstly,a granulation model for text data is proposed to construct a multi-level granular structure.Next,sequential three-way decision is introduced to set a dynamic text analysis framework.Finally,real text review datasets are utilized to validate the effectiveness of the proposed method.Experimental results show that the proposed method significantly reduces the overall decision-making cost with the improved classification quality.
作者 范琴 刘盾 叶晓庆 FAN Qin;LIU Dun;YE Xiaoqing(School of Economics and Management,Southwest Jiaotong University,Chengdu 610031)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2020年第8期732-742,共11页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61876157,71571148) 西南交通大学杨华学者A类计划(No.201806)资助。
关键词 情感分析 文本挖掘 三支决策 代价敏感 粒计算 Sentiment Analysis Text Mining Three-Way Decision Cost-Sensitive Granular Computing
  • 相关文献

参考文献5

二级参考文献32

  • 1ZADEH L A. Fuzzy sets and information granularity[ C]// GUPTA M, RAGADE R, YAGER R. Advances in Fuzzy Set Theory and Applications. Amsterdam: North-Holland Publishing Co, 1979:3-18.
  • 2LINT Y. Granular Computing : From Rough Sets and Neighborhood Systems to Information Granulation and Computing in Words [ C ]//European Congress on Intelligent Techniques and Soft Computing, September 8-12, 1997, [ s. l. ] : [ s. n. ], 1997,1602-1606.
  • 3ZADEH L A. Fuzzy sets[J]. Inf and Control, 1965,8: 338-353.
  • 4PAWLAK Z. Rough Sets [ J ]. International Journal of Information and Computer Sciences, 1982, 11(5):341-356.
  • 5HOBBS J. Granularity[ C]//in Proc 9^th IJCAI, Los Angeles, USA: [ s. n. ] , 1985:432-435.
  • 6BAUM L E,PETRIE T. Statistical Inference for Probabilistic Functions of Finite State Markov Chains[J]. The Annals of Mathematical Statistics, 1966, 37 (6) : 1554-1563.
  • 7LAFFERTY J, MCCALLUM A, PEREIRA F C N. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data[ C]//in Proc. of International Conference on Machine Learning (ICML) , San Francisco, CA: Morgan Kaufmann Publishers Inc, USA, 2001 : 282-289.
  • 8TASKAR B, GUESTRIN C, KOLLER D. Max-Margin Markov Networks [ C ]// Advances in Neural Information Processing Systems ( NIPS), [ s. l. ] : MIT Press, 2003.
  • 9ZHU J, XING E P, ZHANG Bo. Laplace Maximum Margin Markov Networks [ C ]// in Proc. of International Conference on Machine Learning (ICML), New York, NY, USA: ACM, 2008 : 1256-1263.
  • 10Vasileios Hatzivassiloglou, Kathleen R. McKeown. Predicting the semantic orientation of adjectives[A]. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C], 1997:174- 181.

共引文献512

同被引文献47

引证文献9

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部