期刊文献+

三维大地电磁自适应L1范数正则化反演 被引量:12

Three-dimensional magnetotelluric inversion based on adaptive L1-norm regularization
在线阅读 下载PDF
导出
摘要 常规三维大地电磁反演的正则项为L 2范数,它以电阻率空间分布函数处处光滑为模型期望,弱化了算法对电性突变界面的分辨能力.本文实现了正则项为L1范数的三维大地电磁反演算法,让模型空间梯度向量更有机会取得稀疏解,在充分正则的迭代下能够有效突出模型真实电性界面.为避免L1范数零点不可导带来的求解困难,使用迭代重加权最小二乘法把原问题转换为一系列L2正则子问题迭代求解.每个子问题的极小方法使用改进型拟牛顿法,其下降方向既能保证正则项海塞矩阵的精确性,又能允许反演过程随迭代灵活更新正则因子.使用比值法或分段衰减法自适应更新正则因子以避免迭代早期陷入奇异解,从而提升反演收敛的稳定性并降低初始模型依赖度.合成的无噪数据反演表明L 1正则算法的模型恢复效果优于L2正则;不同噪声水平的合成数据反演表明本文的算法具有稳健性;实测数据反演对比表明在合理的正则因子调整策略下,L1正则反演结果的模型分辨率优于L2正则.另外,不同初始模型的反演测试还表明,正则因子选取不合理时L1正则可能造成方块状假异常. The conventional regularization term in three-dimensional magnetotelluric(MT)inversion takes the form of L 2-norm,which requires the underground resistivity model be smooth enough everywhere,thus weakening the resolution of inversion algorithm for the resolving electrical interface when the true model is very complex.This work applied L1-norm regularization to solve three-dimensional MT inversion,which allowed more probability for sparse solution of model space gradient vectors,and can effectively highlight the true electrical interface of the resistivity model if every inversion iteration was sufficiently regularized.In order to avoid the non-differentiability on zero points of the L 1-norm,we transformed the new inversion problem into a series of L2-norm sub-inversion problems using the iterative re-weighted least squares method.Every sub-inversion problem was solved by an improved quasi-Newton method,which retained the exact form of regularization term's Hessian matrix and meanwhile allowed us to flexibly update the regularization parameter on every inversion iteration.For the purpose of preventing singular solutions due to insufficient regularization in the early stage of inversion,we introduced gradient norm ratio strategy or piecewise attenuation strategy to adaptively update the regularization parameter,so that inversion convergence could be improved and initial model dependence could be reduced.Tests on synthetic data show that L1-norm regularization inversion recovers the electrical boundary better than the L2-nrom,and inversion tests under different artificial noise levels indicate that our algorithm is quite robust.We also compared the results of inversion results on real data in L1-norm and conventional L2-norm regularization,which demonstrate that L1-norm regularization could give better results than L2-norm if an appropriate regularization parameter updating strategy is used,otherwise,it might yield many cube-shaped false anomalies in the result due to weaker constraint of L1-norm regularization.
作者 阮帅 汤吉 陈小斌 董泽义 孙翔宇 RUAN Shuai;TANG Ji;CHEN XiaoBin;DONG ZeYi;SUN XiangYu(State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake of Academy,Beijing 100029,China;Key Laboratory of crustal dynamics,The Institute of Crustal Dynamics,China Earthquake of Academy,Beijing 100085,China)
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2020年第10期3896-3911,共16页 Chinese Journal of Geophysics
基金 国家自然科学基金项目(41704078,41674081)资助.
关键词 L1范数正则化 迭代重加权最小二乘 大地电磁 三维反演 拟牛顿法 L1-norm regularization Iteratively re-weighted least squares Magnetotelluric Three-dimensional inversion Quasi-Newton method
  • 相关文献

参考文献11

二级参考文献224

共引文献563

同被引文献287

引证文献12

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部