期刊文献+

基于工况自适应的PHEV等效燃油最小策略 被引量:9

Equivalent consumption minimization strategy for PHEV based on driving condition adaptation
在线阅读 下载PDF
导出
摘要 为改善插电式混合动力汽车(PHEV)的燃油经济性,提出一种基于瞬时优化能量管理策略的工况自适应方法。建立基于反向传播(BP)神经网络算法的工况识别模型,以电池电量平衡为约束条件,利用动态规划算法获取标准工况的等效燃油因子序列。根据基于工况识别模型的实时识别结果及电池荷电状态(SOC),利用插值法求解此时的等效燃油因子,实现了瞬时等效消耗最低控制策略(ECMS)的实时应用。结果表明:该文中所提出的方法与未考虑工况识别的传统等效燃油最小能量管理策略比较能很好改善燃油经济性并保证电池电量均衡,5种工况燃油经济性分别改善2.2%、2.5%、3.3%、2.4%和4.0%。 The driving condition adaptability method of instantaneous optimal energy management strategy was proposed to improve the fuel economy of plug-in hybrid electric vehicle(PHEV).The driving condition identification model was established based on back propagation(BP)neural network algorithm.The equivalent fuel factor sequence of standard driving condition was obtained by using dynamic programming algorithm under the constraints of battery power balance.According to the real-time identificated results of the model and the state of charge(SOC)of battery,the real-time application of the equivalent consumption minimization strategy(ECMS)was realized by using the interpolation method to solve the equivalent fuel factor at this time.The results shows that the proposed method can improve fuel economy and ensure battery power balance comparing with the traditional equivalent consumption minimization strategy without considering the condition identification,and the fuel economy under 5 driving conditions are improved by 2.2%,2.5%,3.3%,2.4%and 4.0%,respectively.
作者 刘灵芝 张冰战 蒋通 LIU Lingzhi;ZHANG Bingzhan;JIANG Tong(Anhui Communications Vocational&Technical College,Department of Automobile and Mechanical Engineering,Hefei 230051,China;School of Automobile and Traffic Engineering,Hefei University of Technology,Hefei 230009,China;Anhui Key Laboratory of Digit Design and Manufacture,Hefei University of Technology,Hefei 230009,China)
出处 《汽车安全与节能学报》 CAS CSCD 2020年第3期371-378,共8页 Journal of Automotive Safety and Energy
基金 国家新能源汽车重点研发计划项目(2017YFB0103204) 中央高校基本科研业务费专项资金资助项目(PA2019GDPK0067) 安徽省高等学校自然科学研究重点项目(KJ2019A1070)。
关键词 插电式混合动力汽车(PHEV) 瞬时等效消耗最低控制策略(ECMS) 反向传播(BP)神经网络算法 动态规划 工况识别 plug-in hybrid electric vehicle(PHEV) equivalent consumption minimum strategy(ECMS) back propagation(BP)neural network algorithm dynamic programming driving condition identification
  • 相关文献

参考文献4

二级参考文献25

  • 1Williamson S S, Emadi A, Dewan A. Effects of Var- ying Driving Schedules on the Drive Train Efficiency and Performance Characteristics of a Parallel Diesel- Hybrid Bus[J].SAE Technical Paper, 2005-01-3477.
  • 2Sharer P, Leydier R, Rousseau A. Impact of Drive Cycle Aggressiveness and Speed on HEV's Fuel Consumption Sensitivity[J].SAE Technical Paper, 2007-01-0281.
  • 3Jeon Soon-Il, Jo Sung-Tae, Park Yeong-Il, et al.Multi-Mode Driving Control of a Parallel Hybrid Electric Vehicle Using Driving Pattern Recognition [-J-. Journal of Dynamic Systems, Measurement, and Control, 2002,124(1) :141-149.
  • 4Langari R, Won Jong-Seob. Intelligent Energy Man- agement Agent for a Parallel Hybrid Vehicle-Part I: System Architecture and Design of the Driving Situation Identification Process[J]. IEEE Transactions on Vehic ular Technology, 2005, 54(3): 925-934.
  • 5Brooker A, Haraldsson K, Hendricks T, et al.AD- VISOR Documentation[EB/OL]. Colorado: Nation- al Renewable Energy Laboratory, 2002. http:// www.ctts.nrel.gov/analysis/advisor_doc/.html.
  • 6Wang R, Lukic S M. Review of Driving Conditions Prediction and Driving Style Recognition Based Con- trol Algorithms for Hybrid Electric Vehicles[C]// Vehicle Power and Propulsion Conference (VPPC), IEEE. Chicago,2011: 1-7.
  • 7Feng Lei, Liu Wenjia, Chen Bo. Driving Pattern Recognition for Adaptive Hybrid Vehicle Control [J].SAE Technical Paper, 2012-01-0742.
  • 8Jie Xing, Han Xuefeng, Ye Hui, et ai. Driving Cycle Recognition for Hybrid Electric Vehicle [C]//Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), IEEE Conference and Expo. Beijing, 2014: 1-6.
  • 9MONTAZERI M, AHMADI A, ASADI M. Driving Condition Recognition for Genetic-fuzzy HEV Con- trol[C]//IEEE. The 3rd International Workshop on Genetic and Evolving Fuzzy Systems. New York:IEEE, 2008 : 65-70.
  • 10JEON S I,JO S T,PARK Y I,et al. Multi-mode Driv- ing Control of a Parallel Hybrid Electric Vehicle U- sing Driving Condition Recognition[J]. Journal of Dy- namic Systems, Measurement, and Control, 2002, 124 (1) :141-149.

共引文献90

同被引文献101

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部