摘要
利用Gleeble-3500热模拟试验机对Ti-4Al-2.5V-1.5Fe钛合金进行总变形量为50%的多道次热压缩模拟实验,研究合金在变形温度为850~1000℃和应变速率为0.01~1 s^-1条件下多道次压缩过程中的热变形行为及微观组织演变规律。结果表明:合金流变应力随变形温度升高和应变速率降低而逐渐降低;不同变形温度下,随应变速率降低,合金软化率均呈现逐渐升高趋势,且软化率随变形温度的升高趋于稳定;各道次间隔时间内由于回复与再结晶,合金均出现不同程度的静态软化现象;在变形温度950~1000℃、应变速率0.01~0.1 s^-1范围内,合金组织得到不同程度的细化和均匀化,并发生回复与再结晶现象,此时合金的热加工性能稳定,有利于热塑性变形,适宜进行热轧成形。
The multi-pass hot compression simulation experiments for Ti-4 Al-2.5 V-1.5 Fe titanium alloy with 50%total deformation were carried out using Gleeble-3500 thermal simulator.The hot deformation behavior and microstructure evolution law of alloy during the multipass compression process at deformation temperature of 850-1000℃and strain rate of 0.01-1 s^-1 were investigated.The results show that the flow stress of alloy decreases gradually with the increase of deformation temperature and the decrease of strain rate.At different deformation temperatures,the softening rate of alloy shows a gradually increase trend with the decrease of strain rate,and the softening rate tends to be stable with the increase of deformation temperature.Different degrees of static softening phenomenon appear in alloy due to recovery and recrystallization in each pass interval.At deformation temperature of 950-1000℃and strain rate of 0.01-0.1 s^-1,the microstructure of alloy is refined and homogenized in different degrees,and the recovery and recrystallization phenomenons occur.At this condition,the hot workability of alloy is stable,which is conductive to thermoplastic deformation and hot rolling forming.
作者
胡亚美
黄海广
郑必举
史亚鸣
张玉勤
蒋业华
HU Ya-mei;HUANG Hai-guang;ZHENG Bi-ju;SHI Ya-ming;ZHANG Yu-qin;JIANG Ye-hua(School of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093,China;National-Local Joint Engineering Laboratory of Metal Advanced Solidification Forming and Equipment Technology,Kunming 650093,China;Engineering Technology Research Center of Titanium Products and Application of Yunnan Province,Chuxiong 651209,China)
出处
《塑性工程学报》
CAS
CSCD
北大核心
2020年第9期132-139,共8页
Journal of Plasticity Engineering
基金
国家重点研发计划项目(2016YFB0301200)。