期刊文献+

片状纳米硅复合石墨负极材料的制备及电化学性能研究

Preparation and Electrochemical Performance of Flake-nano-Si/graphite Composite Anode Material
在线阅读 下载PDF
导出
摘要 以片状微米硅粉为硅源,人造石墨、沥青、酚醛树脂等为原料,通过机械球磨、二次造粒、二次包覆和高温碳化等工艺制得硅碳复合材料BSC-1和BSC-2。XRD、SEM和TEM测试表明所制备材料形貌分布规整,物质主要由石墨、Si及SiOx(0<x≤2)和无定形碳组成。电化学性能测试表明,二次包覆改性后具有核-壳结构材料BSC-2相比于未改性BSC-1,具有更高的可逆比容量和良好的倍率及循环性能,0.5 C倍率下循环24周后,材料比容量稳定在383.3 mAh/g以上,容量保持率接近100%。 Flake-nano-Si/graphite composite anode materials BSC-1 and BSC-2 were prepared by mechanical ball milling,secondary granulation,secondary coating and high temperature carbonization with flake micro silicon as silicon source,artificial graphite,asphalt and phenolic resin as raw materials.The results of XRD,SEM and TEM showed that the morphology of the prepared materials were well distributed,and the materials were mainly composed of graphite,Si,SiOx(0<x≤2)and amorphous carbon.The electrochemical performance test showed that the core-shell structure material BSC-2 had higher reversible specific capacity,better ratio and cycle performance than the unmodified material BSC-1.After 24 cycles at the ratio of 0.5 C,the specific capacity of the material BSC-2 was stable above 383.3 mAh/g and the capacity retention rate was close to 100%.
作者 王兴蔚 侯佼 贺超 杨丹 王北平 侯春平 WANG Xing-wei;HOU Jiao;HE Chao;YANG Dan;WANG Bei-ping;HOU Chun-ping(Ningxia BOLT Technologies Co.,Ltd.,Ningxia Yinchuan 750011;North Minzu University,Ningxia Yinchuan 750021,China)
出处 《广州化工》 CAS 2020年第20期42-45,共4页 GuangZhou Chemical Industry
基金 宁夏回族自治区重点研发计划(2018BEB04014) 中国工程院咨询研究项目(2019NXZD5)。
关键词 锂离子电池 硅碳复合负极材料 核壳结构 电化学性能 lithium ion battery silicon carbon composite anode material core-shell structure electrochemical performance
  • 相关文献

参考文献4

二级参考文献57

  • 1高玲,仇卫华,赵海雷.Li_4Ti_5O_(12)作为锂离子电池负极材料电化学性能[J].北京科技大学学报,2005,27(1):82-85. 被引量:28
  • 2王广驹.世界石墨生产、消费及国际贸易[J].中国非金属矿工业导刊,2006(1):61-65. 被引量:18
  • 3YUN CHAN KANG, SEUNG BIN PARK, SANG WOON KWON.Preparation of submicron size Gamma lithium aluminate particles from the mixture of alumina sol and lithium salt by ultrasonic spray pyrolysis[J]. Journal of Colloid and Interface Science, 1996,182: 59-62.
  • 4Yoshifumi Itoh, Wuled Lenggoro I, Kikuo Okuyama, et al. Size tunable synthesis of highly crystalline BaTiO3 nanoparticles using salt-assisted spray pyrolysis[J].Journal of Nanoparticle Research,2003, 5: 191-198.
  • 5ZHOU X D, GU H C. Synthesis of PMMA-ceramics nanocomposites by spray process[J].Journal of Materials Science Letters, 2002, 21:577- 580.
  • 6Ferry Iskandar, Leon Gradon, Kikuo Okuyama. Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol[J].Journal of Colloid and Interface Science, 2003,265: 296-303.
  • 7ZHOU X D, ZHANG S C, HUEBNER W, et al. Effect of the solvent on the particle morphology of spray dried PMMA[J]. Journal of Materials Science, 2001, 36: 3759- 3768.
  • 8NOBUO KIEDA, GARY L MESSING. Microfoamy particles of copper oxide and nitride by spray pyrolysis of copper-ammine complex solutions[J]. Journal of Materials Science Letters, 1998,17: 299-301.
  • 9Sacchetti C, Artusi M, Santi P, et al. Caffeine microparticles for nasal administration obtained by spray drying[J] .International Journal of Pharmaceutics, 2002, 242: 335-339.
  • 10Yu Zhongshui, True L Rogers, Hu Jiahui, et al. Preparation and characterization of microparticles containing peptide produced by a novel process: spray freezing into liquid[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2002, 54: 221-228.

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部