期刊文献+

基于MGCNN的商品评论情感分析 被引量:3

Sentiment Analysis of Product Reviews Based on Memory Graph Convolutional Neural Network
在线阅读 下载PDF
导出
摘要 为了解决传统的深度学习模型会忽略语料库中全局词共现信息所包含的非连续和长距离语义的问题。本文提出记忆图卷积神经网络(MGCNN)引入注意力机制的商品评论情感分析方法。首先提取词与词、词与文档之间的关系,以全部的词和文档作为节点,将整个数据集构造成一个异构文本图。再基于图卷积网络(GCN)来构建用于图结构数据的神经网络,利用长短期记忆网络(LSTM)提取上下文相关特征,并使用注意力层获取重要特征。多组对比实验结果表明,本方法的分类效果更好,且随着训练集数据所占比例的降低,其优势更加显著。 To solve the problem that the traditional deep learning models ignore the discontinuous and long-distance semantics existing in the global word co-occurrence information in the corpus.This paper proposes a sentiment analysis method for product reviews by introducing the attention model into the memory graph convolutional neural network.We constructed a heterogeneous text graph from a data set by taking words and documents as nodes and considering relationships among them.Then,graph convolutional network was used to extract features of graph structure data.Additionally,the long short-term memory network was employed to extract context-related features.After that,the attention layer was used to focus on important features.The results of multiple comparison experiments show that our method has a better classification effect,and as the proportion of data in the training set decreases,its advantages become more significant.
作者 许犇 徐国庆 程志宇 罗京 XU Ben;XU Guoqing;CHENG Zhiyu;LUO Jing(School of Computer Science&Engineering,Wuhan Institute of Technology,Wuhan 430205,China)
出处 《武汉工程大学学报》 CAS 2020年第5期585-590,共6页 Journal of Wuhan Institute of Technology
关键词 图卷积网络 长短期记忆网络 注意力模型 商品评论 情感分析 graph convolutional network long short-term memory network attention model product reviews sentiment analysis
  • 相关文献

参考文献3

二级参考文献25

共引文献57

同被引文献71

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部