期刊文献+

基于卷积神经网络的模糊车牌图像超分辨率重建方法 被引量:6

A SUPER-RESOLUTION RECONSTRUCTION METHOD BASED ON CONVOLUTIONAL NEURAL NETWORK IN THE FIELD OF FUZZY LICENSE PLATE IMAGE
在线阅读 下载PDF
导出
摘要 针对车牌图像分辨率低、视觉质量差等问题,提出一种针对模糊车牌图像的超分辨率重建方法。在FSRCNN的基础上进行如下改进:特征提取阶段采用双通道替代单通道,增强对图像有用特征信息的提取;映射部分使用深度可分离卷积替代原有卷积并减少映射层数,提升训练速度;重建部分采用子像素卷积操作替代反卷积层,抑制反卷积层产生的人工冗余信息。实验结果表明,该方法的重建结果与其他方法相比,图像质量在主观和客观方面都有所改善,训练时间也有所减少。 Aiming at the problems of low resolution and poor visual quality of fuzzy license plate images,this paper proposes a super-resolution reconstruction method for fuzzy license plate images.It improved on the basis of FSRCNN.In the feature extraction stage,dual channels were used instead of single channel to enhance the extraction of useful feature information;in the mapping part,the depth separable convolution was used to replace the original convolution,reduce the number of mapping layers,and improve the training speed;in the reconstruction part,the sub-pixel convolution operation was used to replace the deconvolution layer,and the artificial redundant information generated by the deconvolution layer was suppressed.Experimental results show that compared with other methods,the image quality and training time of our method are improved in both subjective and objective aspects.
作者 田煜 贾瑞生 邓梦迪 赵超越 Tian Yu;Jia Ruisheng;Deng Mengdi;Zhao Chaoyue(College of Computer Science and Engineering,Shandong University of Science and Technology,Qingdao 266590,Shandong,China;Shandong Province Key Laboratory of Wisdom Mine Information Technology,Shandong University of Science and Technology,Qingdao 266590,Shandong,China)
出处 《计算机应用与软件》 北大核心 2020年第11期159-164,228,共7页 Computer Applications and Software
基金 山东省自然科学基金项目(ZR2018MEE008) 山东省重点研发计划项目(2017GSF20115)。
关键词 模糊车牌图像 超分辨率重建 卷积神经网络 深度学习 Fuzzy license plate image Super-resolution reconstruction Convolutional neural network Deep learning
  • 相关文献

参考文献6

二级参考文献32

  • 1谭兵,徐青,邢帅,耿则勋.小波超分辨率重建算法及其在SPOT影像中的应用[J].测绘学报,2004,33(3):233-238. 被引量:6
  • 2韩玉兵,陈小蔷,吴乐南.一种视频序列的超分辨率重建算法[J].电子学报,2005,33(1):126-130. 被引量:8
  • 3沈焕锋,李平湘,张良培.一种顾及影像纹理特性的自适应分辨率增强算法[J].遥感学报,2005,9(3):253-259. 被引量:10
  • 4沈焕锋,李平湘,张良培.一种自适应正则MAP超分辨率重建方法[J].武汉大学学报(信息科学版),2006,31(11):949-952. 被引量:21
  • 5H S Hou, H C Andrews. Cubic spline for image interpolation and digital filtering [J]. IEEE Transaction on Signal Pressing, 1978,26(6) :508 - 517.
  • 6S Mallet, Guoshen Yu. Super-Resolution with sparse mixing es- timators [ J]. IEEE Transactions on Image Processing, 2010, 19 ( 11 ) : 2889 - 2900.
  • 7W T Freeman, T R Jones, E C Pasztor. Example-based super- resolution [ J ]. IEEE Computer Graphics and Applications, 2002,22(2) :56 - 65.
  • 8M Elad, D Datsenko. Example-based regularization deployed to super-resolution reconstruction of a single image [ J ]. The Computer Journal, 2007,50(4) : 1 - 16.
  • 9Yang Jian-chao, J Wright, T S Huang, Yi Ma. Image super-res- olution via sparse representation [J]. 1EEE Transaction on Im-age Procesfing,2010,19(ll):2861 - 2873.
  • 10Yang Jian-chao, J Wright, T S Huang, Yi. Ma, Image super- resolution as sparse representation of raw image patches [ A]. Proceedings of the 1F, IEEE Conference on Computer Vision and Pattern Recognition[ C]. Anchorage, AK, 2008.1 - 8.

共引文献134

同被引文献59

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部