期刊文献+

Production of metallic iron nanoparticles in a baffled stirred tank reactor: Optimization via computational fluid dynamics simulation 被引量:2

原文传递
导出
摘要 The aim of this work is to optimize iron nanoparticle production in stirred tank reactors equipped with two classical impellers:Rushton and four-pitched blade turbines,which are largely used in batch industrial synthesis and efficient scale-up.The main operative parameters of nanoparticle synthesis are the precursor initial concentration,reducing agent/precursor molar ratio,impeller-tank clearance,and impeller rotational velocity.These parameters were varied during the synthesis to find the optimal operating values based on the Fe(0)(%)production,zeta potential,particle size distribution,and powder X-ray diffraction pattern obtained.We found that the optimal operating conditions for nanoparticle production were an impeller velocity of 1500 rpm,initial iron precursor concentration of 20 mM,molar ratio of reducing agent to iron precursor of 3 mol/mol,and impeller clearance of 0.25 and 0.4 times the vessel diameter for Rushton and four-pitched blade impellers,respectively.Setting these conditions achieved a total conversion of 0.94-0.98 and yielded a product with a unimodal size distribution and average diameters in the range 30-50 nm.The computational fluid dynamics results agreed with the expectations,and the obtained mixing Damkohler numbers show that the process is mixed controlled.
出处 《Particuology》 SCIE EI CAS CSCD 2020年第5期83-96,共14页 颗粒学报(英文版)
  • 相关文献

二级参考文献47

  • 1Zhiya Ma Huizhou Liu.Synthesis and surface modification of magnetic particles for application in biotechnology and biomedicine[J].China Particuology,2007,5(1):1-10. 被引量:6
  • 2Juan Zou,Yao Xu,Bo Hou,Dong Wu,Yuhan Sun.Controlled growth of silver nanoparticles in a hydrothermal process[J].China Particuology,2007,5(3):206-212. 被引量:6
  • 3Athanassiou, E. K., Grass, R. N., & Stark, W.J. (2010). Chemical aerosol engineering as a novel tool for material science: From oxides to salt and metal nanoparticles. Aerosol Science and Technology, 44, 161-172.
  • 4Byeon, J. H., & Kim, J. w. (2010). Morphology and structure of aerosol carbon- encapsulated metal nanoparticles from various ambient metal-carbon spark discharges. Applied Materials & Interfaces, 2, 947-951.
  • 5Byeon, J. H., Park, J. H., Yoon, K. Y., & Hwang, J. H. (2009). Ambient spark generation to synthesize carbon-encapsulated metal nanoparticles in continuous aerosol manner. Nanoscale, I, 339-343.
  • 6BystrzejewskJ, M., Huczko, A., & Lange, H. (2005). Arc plasma route to carbon- encapsulated magnetic nanoparticles for biomedical applications. Sensors and Actuators B: Chemical, 109, 81-85.
  • 7Bystrzejewski, M., Huczko, A., Soszyflski, M., Cudzito, S., Kaszuwara, W., Gemming, T., et al. (2009). An easy one-step route to carbon-encapsulated magnetic nanopar- ticles. Fullerenes, Naaotubes and Carbon Nanostn ctures, 17, 600-615.
  • 8Camenzind, A., Caseri, W. R., & Pratsinis, S. E. (2010). Flame-made nanoparticles fur nanocomposites. Nano Today, 5, 48-65.
  • 9Gottfried H., Janzen C., Pridoehl M., Roth P., Trageser B., & Zimmermann G. (2003). Superparamagnetic oxidic particles, processes for their production and their use. U.S. Patent 0059603.
  • 10A1. Grass, R. N., & Stark, W. J. (2006). Gas phase synthesis of fcc-cobalt nanoparticles. Journal of Chemistry Materials, 16, 1825-1830.

共引文献38

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部