期刊文献+

引入逻辑斯蒂增长模型的集装箱吞吐量长期预测 被引量:7

Long Term Prediction of Container Throughput Based onLogistic Growth Model
在线阅读 下载PDF
导出
摘要 正确预测港口集装箱吞吐量对于港口规划设计及国家经济科学发展具有重要意义。为降低预测误差、提高预测精度,笔者构建了引入逻辑斯蒂增长模型的多因素动态生成系数法,充分发挥该模型处理复杂系统行为能力强的优势。结合天津港、上海港及青岛港的历史数据,对2005至2018年的港口集装箱吞吐量进行了预测研究。研究结果表明:逻辑斯蒂增长模型可提高中长期预测精度,预测结果较为理想;利用修正后的模型方法对未来十年天津港集装箱吞吐量进行了再次预测,研究结果对区域港口规划布局具有一定的参考价值;此外,逻辑斯蒂增长模型应用范围不仅限于集装港口的预测,对于与GDP相关的城市总体规划的人口规模、环境承载力、产业增长等多方面的预测均有较高的利用空间。 It is of great significance to predict the port container throughput correctly for port planning and design as well as the development of national economics and science.In order to reduce the error and improve the accuracy of prediction,a multi-factor dynamic generation coefficient method combined with logistic growth model was established,which fully utilized the advantages of the model in dealing with the behavior of complex systems.The prediction studies of port container throughput from 2005 to 2018 were carried out according to the historical data of Tianjin Port,Shanghai Port and Qingdao Port.The research results show that:the proposed logistic growth model can improve the medium and long-term prediction accuracy,and the prediction results are ideal.The container throughput of Tianjin Port in next decade is predicted again by using the modified method,which provides a certain reference value for regional port planning and layout.In addition,the application scope of logistic growth model is not only limited to container port prediction,but also has high utilization space for the prediction of population size,environmental bearing capacity,industrial growth and other aspects of urban total plan related to GDP.
作者 杨波 刘昱 杨政龙 YANG Bo;LIU Yu;YANG Zhenglong(AECOM Tianjin Co.,Ltd.,Tianjin 300110,China;State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University,Tianjin 300072,China)
出处 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第11期45-50,共6页 Journal of Chongqing Jiaotong University(Natural Science)
关键词 交通运输工程 吞吐量 中长期预测 逻辑斯蒂模型 生成系数法 traffic and transportation engineering throughput middle/long term prediction logistic model generation coefficient method
  • 相关文献

参考文献16

二级参考文献114

共引文献149

同被引文献47

引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部