摘要
近年来无线充电方式以其安全、便捷等优势被越来越多地应用。设计基于磁耦合谐振技术的电动汽车无线充电系统,补偿电路采用双LCC拓扑结构。首先进行原理分析,对比Series-Series(SS)与双LCC补偿拓扑结构,建立互感耦合模型并根据输出功率、效率表达式绘制曲线,比较两种结构工作特性,分析曲线得到采用双LCC结构的优势;磁耦合机构选用不对称平面单线圈结构以增强系统的抗偏移能力,通过建立等效磁路模型计算耦合系数表达式,在MATLAB/SIMULINK上搭建仿真电路,探究电路自身工作特性,得出耦合系数、负载、调谐电感等变量对系统输出的影响,并与理论结果进行比较;在Ansys Maxwell上对磁耦合机构仿真,改变磁芯结构以及发射接收端线圈水平、垂直方向位移距离,通过云场图反映磁场大小,从而确定最佳结构;最后使用Ansys Simplorer搭建电路,与磁耦合机构进行场路联合仿真,反映瞬态磁场分布情况,验证本设计的可行性。
The Wireless Power Transfer(WPT)system has been used widely because of its advantages of safety and convenience.A WPT system of Electrical Vehicle(EV)based on magnetic coupled resonance technology and Double-LCC compensation topology is designed.Firstly,through analyzing the theory,and comparing SS with double-LCC structure based on mutual inductance coupling models,the curves according to the power and efficiency expressions are plotted.Then,one can obtain the performance of two structures and the merits of double-LCC structure.The magnetic coupling mechanism usesasymmetric plane single coil structure to enhance the anti-offset ability,and the coupling coefficient is calculated by building magnetic circuit model.Then the characteristics of the circuit are explored with the existed influence to the system caused by coupling coefficient,load and inductance.Comparison to the results with the theoretical conclusion by using MATLAB/SIMULINK is made.The magnetic coupling mechanism by Ansys Maxwell and the structure of ferrite core is simulated.Altering horizontal and vertical distance of the two sides and the best model by observing the magnetic field intensity is selected.Finally,the field-circuit simulation on the Ansys Simplorer with magnetic coupling mechanism is presented to illustrate the feasibility of the design.
作者
孙舒瑶
高金凤
SUN Shuyao;GAO Jinfeng(Faculty of Mechanical Engineering&Automation,Zhejiang Sci-tech University,Hangzhou 310018,China)
出处
《电力科学与工程》
2020年第10期16-23,共8页
Electric Power Science and Engineering
基金
浙江省自然科学基金(Y20F030015)。
关键词
电动汽车
无线充电
磁耦合谐振
双LCC
场路耦合
electrical vehicle
wireless power transfer
magnetic coupled resonance
double-LCC
field-circuit coupling