期刊文献+

一种动态自纠正最小和LDPC码的译码算法 被引量:3

A Dynamic Self-Corrected Minimum Sum Decoding Algorithm for LDPC Codes
原文传递
导出
摘要 针对低密度奇偶校验(LDPC)码的译码算法复杂度和译码性能的均衡,为了提高译码算法的可靠性和适用性,在自纠正最小和(SCMS)算法的基础上,提出了一种动态自纠正最小和(DSCMS)算法.该算法在迭代译码的过程中,根据变量节点消息设置阈值,明确了SCMS算法中对消息可靠性的判断,提高了算法的误码特性和收敛特性.仿真结果表明,所提出的DSCMS算法的误码性能和收敛性能都要优于SCMS算法及其改进算法.当编码效率为1/2时,DSCMS算法与SCMS算法相比,最多能降低7.15%的迭代次数. Aiming at the trade-off between the decoding complexity and the decoding performance of lowdensity parity check( LDPC) codes,and improving the reliability and applicability of the decoding algorithm,a dynamic self-corrected minimum sum( DSCMS) algorithm is proposed based on the self-corrected minimum sum( SCMS) algorithm. In the process of iterative decoding,the algorithm sets the threshold according to the variable node message,clarifies the judgement of the message reliability in SCMS,and improves the error characteristics and convergence characteristics of the algorithm. Simulation results show that the error performance and convergence performance of DSCMS are better than those of SCMS. When the coding rate is 1/2,the number of iterations of DSCMS can be reduced by up to 7. 15% compared with SCMS.
作者 陈容 陈岚 CHEN Rong;CHEN Lan(Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China;School of Electronic,Electrical and Communication Engineering,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2020年第4期15-20,共6页 Journal of Beijing University of Posts and Telecommunications
基金 国家科技重大专项项目(2018ZX03001006-002)。
关键词 低密度奇偶校验码 置信传播 最小和算法 自纠正最小和算法 low-density parity-check codes belief propagation minimum sum algorithm self-corrected minimum sum algorithm
  • 相关文献

参考文献2

二级参考文献16

  • 1Gallager R G. Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963.
  • 2MacKay D J C, Neal R M. Near Shannon limit performance of low density parity check codes. Electronics Letters, 1996, 32(18): 1645-1646.
  • 3Chung S Y, Forney G D, Richardson, et al. On the design of low-density parity-check codes within 0.004 5 dB of the Shannon limit. IEEE Communieations Letters, 2001,5(2):58-60.
  • 4Kang S, Moon J. Parallel LDPC decoder implementation on GPU based on unbalanced memory coalescing. Proceedings of 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canda, 2012:3692-3697.
  • 5Hu W, Wen J, Wu W, et ol. Highly scalable parallel arithmetic coding on multi-core processors using LDPC codes. IEEE Transactions on Communications, 2012, 60(2): 289-294.
  • 6Balatsoukas-Stimming A, Dollas A. FPGA-based design and implementation of a multi-GBPS LDPC decoder. Proceedings of 2012 IEEE 22nd International Conference on Field Programmable Logic and Applications (FPL), Oslo, Norway, 2012:262-269.
  • 7Perabia E, Gong M X. Gigabit wireless LAN: an overview of IEEE 802.11ac and 802.11ad. ACM SIGMOBILE Mobile Computing and Communications Review, 2011, 15(3): 23-33.
  • 8Fossorier M P C, Mihaljevic M, Imai H. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation. IEEE Transactions on Communications, 1999,47(5):673-680.
  • 9Oh D, Parhi K K. Min-sum decoder architectures with reduced word length for LDPC codes. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57(1): 105-115.
  • 10Zhang X, Siegel P H. Quantized min-sum decoders with low error floor for LDPC codes. Proceedings of 2012 IEEE International Symposium on Information Theory(ISIT), Cambridge, MA, USA, 2012:2871-2875.

共引文献8

同被引文献18

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部