期刊文献+

基于音乐情感识别的舞台灯光控制方法研究 被引量:5

Research on Control Method of Stage Lighting Based on Music Emotion Recognition
在线阅读 下载PDF
导出
摘要 为了实现音乐情感识别的舞台灯光自动控制,需对音乐文件进行情感标记;针对人工情感标记效率低、速度慢的问题,开展了基于音乐情感识别的舞台灯光控制方法研究,提出了一种基于支持向量机和粒子群优化的音乐情感特征提取、分类和识别算法;首先以231首MIDI音乐文件为例,对平均音高、平均音强、旋律的方向等7种音乐基本特征进行提取并进行标准化处理;之后组成音乐情感特征向量输入支持向量机(SVM)多分类器,并利用改进的粒子群算法(PSO)优化分类器参数,建立标准音乐分类模型;最后设计灯光动作模型,将新的音乐文件通过离散情感模型与灯光动作相匹配,生成舞台灯光控制方法;实验结果表明了情感识别模型的有效性,与传统SVM多分类模型相比,明显提高了音乐情感的识别率,减少了测试时间,从而为舞台灯光设计人员提供合理参考。 In order to realize the automatic control of stage lighting of music emotion recognition,it is necessary to mark the emotion of music file.Aiming at the problem of low efficiency and slow speed of artificial emotion marking,the stage lighting control method based on music emotion recognition is studied,and a music emotion feature extraction,classification and recognition algorithm based on support vector machine and particle swarm optimization is proposed.Taking 231 MIDI music files as an example,the basic features of music,such as average pitch,average intensity and melody direction,are extracted and standardized.Then and then the multi-classifier of support vector machine(SVM)is formed,and the parameters of classifier are optimized by using improved particle swarm optimization(PSO)algorithm to establish standard music classification model.Finally,the lighting is designed action model,the new music file is matched with the lighting action through the discrete emotion model,and the stage lighting control method is generated.Experimental results show the effectiveness of the emotion recognition model,compared with SVM traditional multi-classification model,obviously improve the recognition rate of music emotion,reduce the test time,so as to provide a reasonable reference for stage lighting designers.
作者 段中兴 严洁杰 Duan Zhongxing;Yan Jiejie(School of Information&Control Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,China;State Key Laboratory of Green Building in Western China,Xi'an University of Architecture and Technology,Xi'an 710055,China)
出处 《计算机测量与控制》 2020年第11期95-100,共6页 Computer Measurement &Control
基金 国家自然科学基金(51678470)。
关键词 音乐情感分类 支持向量机 粒子群优化 music emotion classification support vector machine particle swarm optimization
  • 相关文献

参考文献5

二级参考文献52

  • 1李敏榆,李涛,刘晓洁,胡晓勤,莫沙,廖竣锴,浦海挺.智能神经网络在乐器音调识别中的应用[J].四川大学学报(工程科学版),2004,36(4):111-114. 被引量:2
  • 2许琳,王作英.基于HMM的音乐识别算法[J].计算机工程,2004,30(10):135-136. 被引量:6
  • 3苟博,黄贤武.支持向量机多类分类方法[J].数据采集与处理,2006,21(3):334-339. 被引量:63
  • 4赵芳,吴亚栋,宿继奎.基于音轨特征量的多音轨MIDI主旋律抽取方法[J].计算机工程,2007,33(2):165-167. 被引量:17
  • 5孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1084
  • 6Camurri, A.I. Lagerlof and G Volpe, Recognizing emotion from dance movement: Comparison of spectator recognition and automated techniques[J]. International journal of Human Computer Studies,2003 59(1-2):213-225.
  • 7E tschberger K. CAN based higher layer protocols and profiles [OL/SB]. Http: / / www. zlgm cu. corn, 2006:10-21.
  • 8Murphy B, Zeadally S, Adam s C. An analysis of process and memory models to support high- speed networking in a UNIX environment [C].Proceedings of the 1996 USE NIX Technical Conference, 1996.
  • 9Goto K, Higash/kubo M, Aoki M. A spatial image processing traf-fic flowsens or and it s application s for signal control, surveillance and warning system [J].Transactions of the Institute of Electrical Engineers, 2001, 121 (1) : 99- 104.
  • 10VAPNIK V. The nature of statistical learning theory[M]. New York: Springer-Vedag, 1995 : 25-27.

共引文献67

同被引文献35

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部