期刊文献+

基于离散程度分析的雷达系统测试性试验方案设计方法 被引量:1

Testability Test Scheme for Radar Subsystem Based on Measures of Dispersion Analysis
在线阅读 下载PDF
导出
摘要 随着装备测试性验证的开展,雷达系统的测试性指标验证越来越受到重视。相较简单产品,雷达系统的故障样本空间具有两大特点:故障模式数量庞大和天线部分的故障模式重复性强。庞大的故障模式数量大,极大地延长了实施周期,试验费效比极低。是否可以减少试验方案中样本数量和如何降低试验样本数量变成雷达系统测试性试验方案设计亟待解决的问题。为此,以离散程度(极差)分析为基础,基于蒙特卡罗模拟和低差异性序列算法,论证大样本小抽样的可行性与合理性,并详细仿真分析截尾数的制定方法,实现试验样本量的缩小,同时保证评估结果精度。最终形成雷达系统测试性试验方案设计方法,为雷达系统测试性指标验证提供依据。 With the development of equipment testability,more and more attention is paid to the testability verification of radar subsystem.Compared with simple products,the fault sample space of radar subsystem has two characteristics:the number of failure modes is large and the failure mode of the antenna is very repetitive.Large number of failure modes extend the implementation period greatly,and reduce the cost-effectiveness ratio.Whether or not the number of samples in the test scheme can be reduced and how to reduce the number of test samples have become the urgent problems to be solved in the design of testability test scheme of radar subsystem.Therefore,based on Measures of Dispersion(Range)analysis,and Monte Carlo low difference sequence algorithm,the feasibility and rationality of large sample and small sampling are demonstrated,and the formulation method of truncation is simulately analyzed in detail,so as to reduce the testing sample,and guarantee the accuracy of comment results.In the end,the testability test scheme for radar subsystem is formed,which provides theory basis for testing index verification of radar subsystem.
作者 张艺琼 刘萌萌 宋成军 ZHANG Yi-qiong;LIU Meng-meng;SONG Cheng-jun(AVIC China Aero-polytechnology Establishment(AVIC-CAPE),Beijing 100028,China)
出处 《测控技术》 2020年第11期13-17,22,共6页 Measurement & Control Technology
关键词 雷达系统 测试性试验 故障模式数量庞大 重复性强 离散程度(极差) 大样本小抽样 radar subsystem testability test lager number of failure modes strong repeatability Measures of Dispersion(Range) small sampling large sample
  • 相关文献

参考文献11

二级参考文献65

共引文献119

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部