摘要
高温导致垂直腔面发射激光器(VCSEL)的输出功率滚降,功率转换效率降低。为了研究高环境温度中VCSEL的温度稳定性和功率转换效率,通过测试不同环境温度下不同氧化孔径波长850 nm VCSEL的P-I-V曲线,发现在相同注入电流下,随着环境温度的升高,VCSEL的氧化孔径越大,功率损耗增加越明显,而小氧化孔径的VCSEL功率损耗受温度的影响很小。室温下VCSEL的氧化孔径越大,功率转换效率越高,但当环境温度高于一定值时,中等氧化孔径(约5μm)的VCSEL反而具有更高的功率转换效率。通过分析温度对VCSEL微分电阻等功率损耗的影响,发现适当降低氧化孔径,有利于实现VCSEL在高环境温度中高的功率转换效率。
High temperature results in the rollover of the output power of vertical cavity surface emitting lasers(VCSELs)and the reduction of the power conversion efficiency.In order to study the temperature stability and power conversion efficiency of VCSELs at high ambient temperature,the P-I-V curves of 850 nm wavelength VCSELs of different oxide apertures under different ambient temperatures were tested.It is found that at the same injection current,with the increase of ambient temperature,the larger the oxide aperture of the VCSEL is,the more obvious the increase of power consumption is,while the power consumption of VCSELs of small oxide aperture is little affected by temperature.At room temperature,larger oxide aperture VCSELs present higher power conversion efficiency.But when the ambient temperature is higher than a certain value,the medium aperture(about 5μm)VCSEL shows a higher power conversion efficiency.By analyzing the influences of temperature on the differential resistance and other power consumption of VCSELs,it is found that proper reduction of the oxide aperture is conducive to the realization of high power conversion efficiency of VCSELs at high ambient temperature.
作者
李荣伟
孙玉润
于淑珍
尹佳静
董建荣
Li Rongwei;Sun Yurun;Yu Shuzhen;Yin Jiajing;Dong Jianrong(School of Nano-Tech and Nano-Bionics,University of Science and Technology of China,Suzhou 215123,China;Key Laboratory of Nano Devices and Applications,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences,Suzhou 215123,China)
出处
《半导体技术》
CAS
北大核心
2020年第11期867-873,共7页
Semiconductor Technology
基金
江苏省青年科学基金资助项目(BK20170431)。
关键词
垂直腔面发射激光器(VCSEL)
氧化孔径
功率损耗
功率转换效率
微分电阻
vertical cavity surface emitting laser(VCSEL)
oxide aperture
power consumption
power conversion efficiency
differential resistance