期刊文献+

不同O-EA角枕颈内固定术后下颈椎椎间盘及关节突软骨应力分布的三维有限元分析 被引量:2

Three-dimensional finite element analysis of stress distribution of lower cervical intervertebral disc and articular process cartilage in different O-EA angles after occipitocervical internal fixation
在线阅读 下载PDF
导出
摘要 目的:构建不同O-EA角(occiput and external acoustic meatus to axis angle)枕颈内固定含外耳道的全颈椎三维有限元模型,观察下颈椎椎间盘及关节突软骨应力分布。方法:收集1例29岁健康男性的含外耳道的全颈椎CT数据,用Mimics 19.0、Geomagic Studio 2015和Solid Works 2018等软件处理,依据O-EA角80°、95°、110°对枕颈内固定系统进行测绘并建立三维模型,构建O-EA角80°、95°、110°并装配有枕颈内固定系统含外耳道的全颈椎三维有限元模型。沿齿状突上方颅底表面施加1.5N·m的力矩,并施加75N垂直力模拟头颅重量,测量前屈、后伸、左侧屈及左旋转工况下C5/6、C6/7椎间盘和C6、C7上关节突软骨Von Mise应力峰值并进行分析和比较。结果:成功建立了不同O-EA角(80°、95°和110°)含外耳道全颈椎三维有限元模型。OEA角95°枕颈内固定含外耳道的全颈椎三维有限元模型在前屈、后伸和左旋转工况下C5/6、C6/7椎间盘和C6、C7上关节突软骨的Von Mise应力峰值比O-EA角80°和O-EA角110°模型小;左侧屈工况下,C5/6椎间盘以及C6、C7上关节突软骨Von Mise应力峰值O-EA角95°模型比O-EA角80°和110°模型大,C6/7椎间盘Von Mise应力峰值O-EA角95°模型比O-EA角110°模型大而比O-EA角80°模型小。结论:三维有限元分析结果提示枕颈内固定术中应注意O-EA角大小,O-EA角不恰当可能造成C5/6、C6/7椎间盘和C6、C7上关节突软骨的Von Mise应力峰值增加,进而加速下颈椎的退变。 Objectives:A three-dimensional finite element model of the whole cervical spine with external auditory canal of occiput and external acoustic meatus to axis angle(O-EA angle)of 80°,95°,and 110°and equipped with occipitocervical internal fixation system was constructed to study the stress distribution of the lower cervical intervertebral disc and articular process cartilage.Methods:Based on the CT source data of the total cervical spine with external auditory canal of a 29-year-old healthy man,and computed by Mimics 19.0,Geomagic Studio 2015,and Solid Works 2018 software,to establish a three-dimensional finite element model of the whole cervical spine with external auditory canal of O-EA angle of 80°,95°,and 110°and equipped with occipitocervical internal fixation system.A net torque of 1.5N·m was applied along the skull base surface above the odontoid process,and 75N was applied to simulate skull weight.The stress peaks of C5/6 and C6/7 intervertebral discs and the articular cartilage of C6 and C7 under the conditions of forward flexion,posterior flexion,left flexion and left rotation were measured and compared.Results:The finite element analysis model with external auditory canal was successfully established to simulate occipital and cervical fixation at different O-EA angles(80°,95°,and 110°).The Von Mise stress peak values of C5/6,C6/7 intervertebral discs,and C6,C7 superior articular process cartilages under flexion,extension and left rotation conditions were smaller than those of the models with O-EA angle of 80°and 110°.Under the left flexion condition,the stress peak of the C5/6 intervertebral disc and the upper articular process of C6 and 7 at OEA angle of 95°was greater than that at O-EA angle of 80°and 110°,while the stress peak of the C6/7 intervertebral disc at O-EA angle of 95°was greater than that at O-EA angle 110°and less than O-EA angle 80°.Conclusions:The results of three-dimensional finite element analysis indicate that the O-EA angle should be paid attention during occipitocervical internal fixation.The improper O-EA angle may cause the increase of Von-Mise stress peak value of C5/6,C6/7 intervertebral disc and C6,C7 superior articular process cartilage,and then accelerate the degeneration of the lower cervical spine.
作者 陈太勇 杨曦 修鹏 刘立岷 宋跃明 CHEN Taiyong;YANG Xi;XIU Peng(Department of Orthopedic Surgery and Orthopedic Research Institute,West China Hospital,Sichuan University,Chengdu,610041,China)
出处 《中国脊柱脊髓杂志》 CAS CSCD 北大核心 2020年第11期1007-1015,共9页 Chinese Journal of Spine and Spinal Cord
关键词 含外耳道全颈椎模型 枕颈角 有限元 生物力学 Complete cervical model with external auditory canal O-EA angle Finite element Biomechanics
  • 相关文献

参考文献4

二级参考文献33

  • 1El-Rich M, Arnoux PJ, Wagnac E, et al. Finite element investigation of the loading rate effect on the spinal load- sharing changes under impact conditions[J]. J Biomech, 2009, 42(9): 1252-1262.
  • 2Brolin K, Halldin P. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics[J]. Spine, 2004, 29(4): 376-385.
  • 3Zhang H, Bai J. Developmen', and validation of a finite ele-ment model of the occipito-atlantoaxial complex under physio- logic loads[J]. Spine, 2007, 32(9): 968-974.
  • 4Ng HW, Teo EC. Influence of preload magnitudes and orientation angles on the cervical biomeehanies: a finite element study[J]. J Spinal Disord Teeh, 2005, 18(1): 72-79.
  • 5Panjabi MM, Nibu K, Cholewicki J. Whiplash injuries and the potential for mechanical instability[J]. Eur Spine J, 1998, 7(6): 484-492.
  • 6Panjabi MM. Cervieal spine models for biomechanieal researeh [J]. Spine, 1998, 23(24): 2684-2700.
  • 7Brekelmans WA, Poort HW, Slooff TJ. A new method to anal- yse the mechanical behaviour of skeletal parts[J]. Acta Orthop Scand, 1972, 43(5): 301-317.
  • 8Yoganandan N, Kumaresan S, Voo L, et al. Finite element applications in human cervical spine modeling[J]. Spine, 1996, 21(15): 1824-1834.
  • 9Zhang QH, Teo EC, Ng HW, et al. Finite element analysis of moment-rotation relationships for human cervical spine [J]. J Biomech, 2006, 39(1): 189-193.
  • 10Goel VK, Clark CR, Gallaes K, et al. Moment-rotation rela- tionships of the ligamentous occipito-atlanto-axial complex[J]. J Biomech,1988, 21(8): 673-680.

共引文献51

同被引文献23

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部