期刊文献+

面向组织病理学图像的颜色迁移算法 被引量:4

Color Transfer Algorithm for Histopathological Images
在线阅读 下载PDF
导出
摘要 颜色迁移是组织病理学图像颜色预处理中的重要环节.为了解决颜色迁移过程中某些重要结构颜色改变的问题,在保结构颜色迁移(structure-preserving color normalization,SPCN)算法基础上融合聚类过程,并结合稀疏非负矩阵分解(sparse non-negative matrix factorization,SNMF)提出K均值稀疏非负矩阵分解基组合(K-means and SNMF basis combination,KSBC)算法.首先通过K均值算法对图像聚类,根据聚类中心识别细胞结构;然后求解稀疏非负矩阵分解模型得到染色基和结构矩阵,根据聚类结果对结构矩阵和染色基准确组合.KSBC算法承袭了SPCN算法的特性,又能灵活地迁移和保留原图像结构颜色.在组织病理学图像数据库中进行对比实验,KSBC算法在图像质量评估指标上优于直方图匹配,Reinhard,Macenko,SPCN和高阶矩算法,并提高残差神经网络的泛化性能. Color transfer is an important process in histopathological color normalization.In order to preserve structural color,this paper proposes KSBC(K-means and SNMF basis combination)algorithm based on SPCN(structure-preserving color normalization)algorithm with clustering progress and sparse non-negative matrix factorization.Firstly,KSBC algorithm clusters image by K-means algorithm,and identifies cell structure based on cluster centers.Then we solve sparse non-negative matrix factorization model to obtain stain vectors and structure matrix,accurately combining structure matrix with the corresponding stain vectors according to the clustering results.KSBC algorithm inherits the characteristics of SPCN algorithm,and can flexibly transfer and preserve the structural color of the original image.This paper performs comparative experiments in histopathology image database,and shows that the quality evaluation metrics of image of KSBC algorithm is better than histogram specification,Reinhard,Macenko,SPCN,and higher moments algorithms,and improves residual neural network generalization performance.
作者 张术昌 袁梓洋 王红霞 陈波 Zhang Shuchang;Yuan Ziyang;Wang Hongxia;Chen Bo(Department of Mathematics,College of Arts and Sciences,National University of Defense Technology,Changsha 410073)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2020年第12期1890-1897,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61977065).
关键词 颜色迁移 K均值聚类 K均值稀疏非负矩阵分解基组合 color transfer K-means clustering K-means and SNMF basis combination
  • 相关文献

参考文献3

二级参考文献16

  • 1Ruderman D L, Cronin T W, Chiao C C. Statistics of cone responses to natural images: Implications for visual coding [J].Journal of the Optical Society of America, 1998, 15(8): 2036~ 2045
  • 2[美]CastlemanKR.朱志刚 等译.数字图像处理[M].北京:电子工业出版社,1998..
  • 3Reinhard Erik, Ashikhmin Michael, Gooch Bruce, et al. Color transfer between images [J]. IEEE Computer Graphics and Applications, 2001, 21(5): 34~41
  • 4Welsh Tomihisa, Ashikhmin Michael, Mueller Klaus. Transfer color to greyseale images [A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH,San Autonio, Texas, 2002. 277~280
  • 5Olshausen A, Field D J. Sparse coding with over-complete basis set: A strategy employed by V1? [J]. Vision Research, 1997,37:3311~3325
  • 6Zhu S C. Statistical modeling and conceptualization of visual patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 1~23
  • 7Srivastava A, Lee A B, Simoncelli E P, et al. On advances in statistical modeling of natural images [J]. Journal of Mathematical Imaging and Vision, 2003, 18(1): 17~ 33
  • 8Hertzmann A, Jacobs C, Oliver N, et al. Image analogies [A].In: Computer Graphics Proceedings, Annual Conference Series,ACM SIGGRAPH, Los Angeles, California, 2001. 327~340
  • 9Balboa R M, Tyler C W, Grzywacz N M. Occlusions contribute to scaling in natural images [J]. Vision Research, 2001, 41(7): 955~964
  • 10Thomson MGA. Beats, kurtosis and visual coding [J].Network: Computation in Neural Systems, 2001, 12(3): 271~287

共引文献70

同被引文献14

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部