期刊文献+

基于贝叶斯卷积神经网络与数据增强的SAR图像目标分类方法 被引量:8

Target Classification of SAR Images Based o Bayesian Convolutional Neural Network and Data Augmentation
在线阅读 下载PDF
导出
摘要 针对合成孔径雷达(SAR)图像目标分类中扩展操作条件的重难点问题,提出了基于贝叶斯卷积神经网络与数据增强的SAR图像目标分类方法。该方法采用贝叶斯卷积神经网络获得更为可靠的分类网络,通过数据增强可为网络训练提供更为充足的样本数据,覆盖噪声干扰及部分遮挡等情形。实验结果表明,该方法在标准操作条件、噪声干扰及部分遮挡条件下,相比现有几类方法具有更强的有效性和稳健性。 Aiming at the key and hard problem in the target classification of synthetic aperture radar(SAR)images under extended operating conditions,a method based on Bayesian convolutional neural network and data augmentation was proposed.The method employed the Bayesian convolutional neural network to obtain more robust classification networks and produced more available samples via data augmentation,which covered the conditions of the standard operating condition,noise corruption,and partial occlusions.The experimental results validated that the proposed method achieved better effectiveness and robustness under the standard operating condition,noise corruption,and partial occlusion over several present algorithms.
作者 涂豫 TU Yu(Henan Polytechnic Institute,Nanyang 473000,China;Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《探测与控制学报》 CSCD 北大核心 2020年第6期43-48,共6页 Journal of Detection & Control
关键词 合成孔径雷达 目标分类 贝叶斯卷积神经网络 数据增强 synthetic aperture radar target classification Bayesian convolutional neural network data augmentation
  • 相关文献

参考文献9

二级参考文献66

  • 1韩萍,吴仁彪,王兆华.基于KFD准则的SAR目标特征提取与识别[J].现代雷达,2004,26(7):27-30. 被引量:11
  • 2刘相滨,邹北骥,孙家广.基于边界跟踪的快速欧氏距离变换算法[J].计算机学报,2006,29(2):317-323. 被引量:36
  • 3徐牧,王雪松,肖顺平.基于Hough变换与目标主轴提取的SAR图像目标方位角估计方法[J].电子与信息学报,2007,29(2):370-374. 被引量:16
  • 4Karhunen J, Joutsensalo J. Generalizations of principal component analysis, optimization problems and neural net- works [ J ]. Neural Networks, 1995, S (4) : 549-562.
  • 5Comon P. Independent component analysis: A new con- cept? [J]. Signal Processing, 1994,36(3) :287-314.
  • 6Belhumeur P N, Hespanha J P, Kriegman J K. Eigenfaces vs fisherfaces: recognition using class specific linear pro- jection[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19:711-720.
  • 7Donoho D L. Compressed Sensing [ J ]. IEEE Transac- tions on Information Theory,2006, 52(4) :1289-1306.
  • 8Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem[ J]. Neural Com- putation, 1998,10 (5) : 1299-1319.
  • 9Wright J, Yang A Y, Ganesh A, etc. Robust Face Recog- nition via Sparse Representation [ J ]. 2009, 31 ( 2 ) : 210-227.
  • 10Figueiredo M A T, Nowak R D, Wright S J. Gradient Pro- jection for Sparse Reconstruction: Application to Com- pressed Sensing and Other Inverse Problems [ J ]. IEEE journals of selected topics in signal processing, 2007,1 (4) :586-597.

共引文献125

同被引文献72

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部