期刊文献+

密度聚类算法电力工程数据完整性分析

Integrity Analysis of Power Engineering Data by Density Clustering Algorithm
在线阅读 下载PDF
导出
摘要 电力工程数据分析与应用,是实现大规模电力工程缺失数据筛选、进行形态分析的基础。文章针对电力工程缺失数据筛选困难的问题,提出了一种基于密度聚类算法的分析方法,该方法通过电力工程数据收集、预处理、提取数据个性化特征以及进行密度聚类算法分析等步骤,实现了电力工程缺失数据的高速筛查和形态分析。文章通过智能仪表、智能终端数据同步性验证,认为所提出的基于密度聚类算法的电力工程数据完整性分析方法能够有效实现缺失数据筛查和形态分布解读,对于全面提升电力我国电力工程数据完整性和用电情况分析具有较好的指导意义。 Data analysis and application of power engineering are the basis of missing data screening and morpho⁃logical analysis in large-scale power engineering.In view of the lack of power engineering data screening difficult problem,this paper proposes a algorithm based on density clustering analysis method,the method by electric power engineering data collection,preprocessing,to extract data personalization features and density clustering algorithm analysis steps,to realize the high-speed screening and morphological analysis of power electrical engineering miss⁃ing data.In this paper,through the intelligent instrument,intelligent terminal data synchronization test,think of the proposed clustering algorithm based on density of electric power engineering data integrity analysis method can ef⁃fectively realize the missing data screening and morphological distribution interpretation,it has a good guiding sig⁃nificance for comprehensively improving the data integrity and power consumption analysis of power engineering in my country.
作者 唐取 毕圣灵 TANG Qu;BI Sheng-ling(Foshan Power Supply Bureau of Guangdong Power Grid Co.,Ltd,Foshan Guangdong 528000,China)
出处 《粘接》 CAS 2020年第12期74-77,共4页 Adhesion
关键词 密度聚类算法 电力工程 缺失数据筛查 特征提取 density clustering algorithm electric power engineering missing data screening feature extraction
  • 相关文献

参考文献10

二级参考文献144

共引文献629

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部