摘要
基于分数阶脉冲控制理论和模糊控制理论,研究了两个异结构分数阶混沌系统的同步问题。针对分数阶非线性混沌系统,通过T-S模糊模型将非线性驱动混沌系统和非线性响应混沌系统转化为线性系统的非线性叠加。利用分数阶脉冲微分方程稳定性定理,设计了模糊脉冲控制器,给出了两个异结构分数阶混沌系统模糊脉冲同步的充分条件。最后,以分数阶Chen混沌系统作为驱动混沌系统,分数阶Lorenz混沌系统作为响应混沌为例进行数值仿真,理论分析和数值仿真结果证明了该方法的有效性。
Based on fractional-order impulsive control theory and fuzzy control theory,the synchronization problem of two different-structure fractional-order chaotic systems is studied.For fractional-order nonlinear chaotic systems,the nonlinear driven chaotic system and the nonlinear response chaotic system are transformed into the nonlinear superposition of linear systems by the T-S fuzzy model.By using the stability theorem of fractional-order impulsive differential equations,a fuzzy impulsive controller is designed,and the sufficient conditions for fuzzy impulsive synchronization of two fractional-order chaotic systems with different structures are given.Finally,the fractional-order Chen chaotic system is used as the driving chaotic system,and the fractional-order Lorenz chaotic system as the response chaos is taken as an example for numerical simulation.Theoretical analysis and numerical simulation results illustrate the effectiveness of the proposed method.
作者
卢宁
郑永爱
LU Ning;ZHENG Yong-ai(College of Information Engineering,Yangzhou University,Yangzhou 225127,China)
出处
《控制工程》
CSCD
北大核心
2020年第12期2099-2103,共5页
Control Engineering of China
基金
国家自然科学基金资助项目(61973266)。
关键词
分数阶混沌系统
异结构
T-S模糊模型
模糊脉冲控制
Fractional-order chaotic system
different structure
T-S fuzzy model
fuzzy impulsive control