期刊文献+

基于广义互相关的分布式MIMO雷达信号合成算法 被引量:1

Signal Combining Algorithm Based on Generalized Cross-Correlation for Distributed MIMO Radar
在线阅读 下载PDF
导出
摘要 为提高分布式MIMO雷达的弱目标探测能力,提出一种基于广义互相关的分布式MIMO雷达信号合成算法。该算法先从同一天线接收的正交信号时延估计和不同天线接收信号的时延估计两个方面,利用广义互相关时延估计方法,对信号的时延差进行计算,再将所得合成信号作为新的信号对余下信号进行时延差估计,在完成多通道时延差补偿后,通过对合成信号相对权值和自相关系数关系进行分析,获得多个信号的相对权值,进而加权完成信号合成。仿真结果表明,所提算法可有效提高信噪比,相比已有算法具有更好的抗相位噪声性能。 To improve the weak target detection capability of distributed MIMO radar,a distributed MIMO radar signal combining algorithm based on generalized cross-correlation is proposed.The algorithm first uses the generalized cross-correlation delay estimation method to calculate the delay difference of multiple orthogonal signals received by the same antenna and the delay difference of the same signal received by different antennas.Then the resulting combined signal is used as a new signal to estimate the delay difference of the remaining signals.After completing the multi-channel delay difference compensation,by analyzing the relationship between the relative weight of the synthesized signal and the autocorrelation coefficient,the relative weight of multiple signals is obtained,and then the signal synthesis is performed by weighting.The simulation result shows that the proposed algorithm can effectively improve the signal-to-noise ratio and has better performance against phase noise than existing algorithms.
作者 王盛 吕树恩 WANG Sheng;LYU Shu’en(Information Engineering University, Zhengzhou 450001, China)
机构地区 信息工程大学
出处 《信息工程大学学报》 2020年第4期391-395,共5页 Journal of Information Engineering University
关键词 分布式MIMO雷达 信噪比改良 时延补偿 合成权值估计 distributed MIMO radar signal to noise ratio improvement delay compensation composite weight estimation
  • 相关文献

参考文献6

二级参考文献50

  • 1崔玮玮,曹志刚,魏建强.声源定位中的时延估计技术[J].数据采集与处理,2007,22(1):90-99. 被引量:93
  • 2张海瑛,袁超伟.一种实用的通信信号信噪比盲估计方法[J].无线电通信技术,2007,33(2):49-51. 被引量:7
  • 3隋丹,葛临东.一种新的基于改进PASTd的中频信号盲信噪比估计算法[J].电子与信息学报,2007,29(7):1657-1661. 被引量:20
  • 4Rogstad D H, Mileant A, Pham T T. Antenna Ar- raying Techniques in the Deep Space Network[M]. Hoboken, New Jersey: John Wiley, 2003: 73-126.
  • 5National Semiconductor Corp. Microphone array am- plifier reduces background noise[EB/OL]. [2012-02- 28] http://mobiledevdesign, com/standards_regula- tions/microphone-array-amplifier-national-semicon- ductor-0228/index, html.
  • 6Yao Kung, Hudson Ealph E, Reed Chris W, et al. Blind beamforming on a randomly distributed sensor array system[J]. IEEE Journal on Selected Areas in Communications, 1998,16(8) :1555-1567.
  • 7Toon John. Adaptive array network could improve access to NASA's earth observing satellites [EB/ OL]. [2012-05-23]http://eol. gsfc. nasa. gov/new/ validationreport/AdaptiveArray, html.
  • 8Dolinar S J, Kalson S. Maximum likelihood estima- tion of signal to noise ratio and combiner weight [R]. TDA Progress Report 42-85, Jet Propulsion Laboratory Pasadena California, 1986.
  • 9. Dolinar S J. Cramer-Rao bounds for signal-to-noise ratio and combiner weight estimation [R ]. TDA Progress Report 42-86, Jet Propulsion Laboratory Pasadena California, 1986.
  • 10Shen Cai yao, Yang ke, Yu Hong yi, et al. Crame- rao bands of SNR estimation for BPSK and QPSK signals over SIMO channels [C]///Proceedings of 2010 2nd International Conference on Signal Pro- cessing Systems, Dalian China, 2010.

共引文献89

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部