期刊文献+

基于模拟退火算法改进的大脑情感学习模型 被引量:1

Improved Brain Emotion Learning Model Based on Simulated Annealing Algorithm
在线阅读 下载PDF
导出
摘要 传统的大脑情感学习模型因其结构特点及其训练算法的局限性,在高维度数据分类问题上表现不佳,为提高高维度数据的分类准确性,提出一种基于模拟退火算法改进的大脑情感学习模型。通过改进网络结构,并采用模拟退火算法优化大脑情感学习模型的训练过程,改善其拟合能力和局部搜索能力,提高模型对于高维度数据分类问题的分类准确率。选取UCI数据集中常用于算法性能对比的几组数据集进行实验,实验结果表明,对于维度较高的数据集,该模型具有较好的分类效果。 The traditional brain emotion learning model is not good in high-dimensional data classification because of its struc⁃tural characteristics and limitations of training algorithms.To improve the classification accuracy of high-dimensional data,a brain emotion learning model based on simulated annealing algorithm is proposed.By improving the network structure and using simulated annealing algorithm to optimize the training process of brain emotional learning model,its fitting ability and local search ability are improved,and the classification accuracy of the model for high-dimensional data classification problems is enhanced.Experiments are carried out on several sets of datasets commonly used in UCI datasets for performance comparison of experiments.The experimen⁃tal results show that the model has better classification effect for datasets with higher dimensions.
作者 唐詹 潘建国 TANG Zhan;PANJianguo(College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 201400)
出处 《计算机与数字工程》 2020年第12期3017-3021,共5页 Computer & Digital Engineering
关键词 大脑情感学习 高维度 数据分类 模拟退火算法 brain emotional learning high dimensional data classification simulated annealing algorithm
  • 相关文献

参考文献6

二级参考文献49

  • 1洪家荣,丁明峰,李星原.三角剖分的模拟退火算洁[J].计算机学报,1994,17(9):682-689. 被引量:10
  • 2陈华根,李丽华,许惠平,陈冰.改进的非常快速模拟退火算法[J].同济大学学报(自然科学版),2006,34(8):1121-1125. 被引量:47
  • 3张梅凤,邵诚,甘勇,李梅娟.基于变异算子与模拟退火混合的人工鱼群优化算法[J].电子学报,2006,34(8):1381-1385. 被引量:82
  • 4Nusyirwan I F, Bil C. Effect of uncertainties on UCAV trajectory optimization using evolutionary programming[C]// Information, Decision and Con:rol, 2007 : 219 - 223.
  • 5Fu Li, Yu Meixiang, Xu Xinhe. The strategy studying of air combat about the unmanned combat air vehicles[C]//Chinese Control and Decision Conference, 2008 : 3775 - 3778.
  • 6Benjamin G O. Vectored propulsion, super maneuverability and robot aircraft[M]. New York : Springer Verlag , 1990.
  • 7Pedro J O, Mansfield B A. Nonlinear control of aircraft at high angles of attack[C]// 7th AFRICON ConJerence, 2004, 1 : 431 -436.
  • 8Lower M, Szlachetko B, Krol D. Fuzzy flight control system for helicopter intelligence in hover[C]//5th International Conference on Intelligent Systems Design and Applications,2005:370- 374.
  • 9Moren J, Balkenius C. A computational model of emotional learning in the amygdala[C]//From Aaimals to Animals 6: Proc. of the 6th International Conference on lhe Simulation of Adaptive Behavior, 2000.
  • 10Moren J. Emotion and learning: a computational model of the amygdala[D]. Department of Cognitive Science, Lund University, London, 2002.

共引文献82

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部