期刊文献+

结合RGB-D视频和卷积神经网络的行为识别算法 被引量:1

Behavior Recognition Algorithm Combining RGB-D Video and Convolutional Neural Network
在线阅读 下载PDF
导出
摘要 针对目前早期融合RGB图像和深度图像的特征时存在特征维度高,计算复杂等问题,提出一种结合RGB-D视频序列和卷积神经网络的行为识别算法。首先为了提取RGB视频序列的静态表观和短时域运动信息,将RGB视频序列可重叠地分割为一定数量的子序列片段,输入到卷积神经网络中训练。然后在深度图序列中,将计算得到的改进深度运动图(Depth Motion Map,DMM)作为长时域运动信息表示并输入到二维卷积神经网络训练。最后利用改进的加权乘积法融合上述多路卷积神经网络的预测分数,得到最终的分类结果。实验结果表明,在公开的动作识别库UTD-MHAD和MSR Daily Activity 3D上,该算法能够有效提取行为动作的静态表观和时域运动信息,并取得了较好的识别效果。 A new human action recognition algorithm combining RGB-D and convolutional neural network(CNN)is pro⁃posed to dispose of the problem of high-level feature dimension and computational complexity in the early fusion of the feature of RGB and depth images.First,The convolutional neural network(CNN)is utilized to train RGB video segments which are over⁃lapped segmented from a RGB video sequence,and also extract the static appearance and short-term temporal motion information of a RGB video sequence.Next,in a depth map sequence,the 2D CNN streams is utilized to train the improved depth motion maps(DMMs)which is used as the representation of a long-term temporal motion information.Furthermore,the final classification result can be obtained from the improved weighted product rule which is used to fuse the prediction scores of the above multi-CNN streams.Finally,the experimental results show that the algorithm can effectively extract the static appearance and temporal motion information of actions,achieve better recognition results on the public action recognition of library UTD-MHAD and MSR Daily Ac⁃tivity 3D.
作者 李元祥 谢林柏 LI Yuanxiang;XIE Linbo(Engineering Research Center of Internet of Things Technology Applications of the Ministry of Education,School of Internet of Things Engineering,Jiangnan University,Wuxi 214122)
出处 《计算机与数字工程》 2020年第12期3052-3058,共7页 Computer & Digital Engineering
基金 江苏省产学研联合创新基金资助—前瞻性联合研究项目(编号:BY2016022-28)资助。
关键词 人体行为识别 深度运动图 RGB 卷积神经网络 决策融合 human action recognition depth motion map RGB convolutional neural network decision-level fusion
  • 相关文献

参考文献2

二级参考文献19

  • 1李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 2Comaniciu D, Ramesh V, Meer P. Real-time tracking of non- rigid objects using mean shift [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC, USA : IEEE Press, 2000: 142-149.
  • 3Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (5): 564-577.
  • 4Shen C, Brooks M J, Hengel A. Fast global kernel density mode seeking: applications to localization and tracking [ J ]. IEEE Transactions on Image Processing, 2007, 16(5) : 1457-1469.
  • 5Zhao Q, Brennan S, Tao H. Differential EMD tracking [ C ]//Proceedings of IEEE Conference on Computer Vision. Washington DC, USA : IEEE Press, 2007: 1-8.
  • 6Han B, Comaniciu D, Zhu Y, et al. Sequential kernel density approximation and its application to real-time visual tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(7): 1186-1197.
  • 7Li P. An adaptive binning color model for mean shift tracking [ J ]. IEEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(9) : 1293-1299.
  • 8Park M, Liu Y, Collins R. Efficient mean shift belief propagation for vision tracking [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC, USA: IEEE Press, 2008: 1-8.
  • 9Fan Z, Yang M, Wu Y. Muhiple collaborative kernel tracking [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2007, 29 (7) : 1268-1273.
  • 10Collins R T. Mean-shift blob tracking through scale space [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Madison. Washington DC, USA :IEEE Press,2003 : 234-240.

共引文献24

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部