期刊文献+

基于卷积神经网络的丹顶鹤定位识别 被引量:4

Location and identification of red-crowned cranes based on convolutional neural network
在线阅读 下载PDF
导出
摘要 国家珍稀动物丹顶鹤多栖息于开阔平原、沼泽、湖泊、海滩及近水滩涂等地,不利于人工跟踪及近距离观测丹顶鹤的实时动向。针对传统快速卷积神经网络(Faster RCNN)检测不准确的问题,现设计提出在原始网络基础上,结合多特征融合金字塔(FPN)实现多层语义信息融合,建立针对丹顶鹤的识别模型。此外,为提高模型召回率,还采用了线性加权的非极大值抑制算法。改进后的算法较原始算法精确率提高了3.5%左右。实验结果表明,所提模型对于丹顶鹤种群具有较好的识别效果,为湿地的丹顶鹤保护与监测提供新的技术手段,使湿地的生态文明建设得到进一步加强。 Red-crowned cranes,a rare national animal,mostly inhabit in open plains,swamps,lakes,beaches and near tidal flats,which is not conducive to manual tracking and real-time observation of red-crowned cranes.Aiming at the inaccurate detection problem of traditional Faster RCNN,the present design proposes to realize multi-layer semantic information fusion based on the original network and combine FPN to establish the identification model for red-crowned cranes.In addition,in order to improve the recall rate of the model,a linear non-maximum suppression algorithm is used.The accuracy of the improved algorithm is about 3.5%higher than that of the original algorithm.The experiment result shows that the model has a good identification effect for red-crowned cranes,it provides a new technical means for the protection and monitoring of red-crowned cranes in wetland,and further strengthens the ecological civilization construction of wetland.
作者 吕秀丽 陈帅男 Lyu Xiuli;Chen Shuainan(School of Physics and Electronic Engineering,Northeast Petroleum University,Daqing 163318,China)
出处 《电子测量技术》 2020年第20期104-108,共5页 Electronic Measurement Technology
基金 黑龙江省高等教育教学改革研究项目(SJGY20180069)资助。
关键词 丹顶鹤识别 Faster RCNN FPN 非极大值抑制 identification of red-crowned cranes Faster RCNN FPN non-maximum suppression
  • 相关文献

参考文献17

二级参考文献84

  • 1陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:64
  • 2刘德连,张建奇,何国经.背景高斯化的遥感图像目标检测[J].光学学报,2007,27(4):638-642. 被引量:9
  • 3CHOI S W, MORRIS J. Dynamic model-based batch process monitoring [ J ]. Chemical Engineering Science, 2008, 63(3): 622-636.
  • 4LEE J M, YOO C K. Enhanced process monitoring of fed-batch penicillin cultivation using time-varying and multivariate statistical analysis [ J ]. Journal of Biotechnology,2004,110(2) :119-136.
  • 5CHEN J, CHEN H H. On-line batch process monitoring using MHMT-based MPCA [ J ]. Chemical Engineering Science,2006,61 ( 10 ) : 3223-3239.
  • 6AGUADO D, FERRER A. Multivariate SPC of a sequencing batch reactor for wastewater treatment [ J ]. Chemometrics and Intelligent Laboratory Systems ,2007,85( 1 ) :82-93.
  • 7CAMACHO J, PICO J. Multi-phase principal component analysis for batch processes modeling [ J ]. Chemometrics and Intelligent Laboratory Systems, 2(306, 81(2) : 127-136.
  • 8YU J, QIN S J. Multiway Gaussian mixture model based muhiphase batch process monitoring [ J ]. Ind. Eng. Chem. Res. ,2009,48(18) :8585-8594.
  • 9LU N, GAO F. Sub-PCA modeling and on-line monitoring strategy for batch processes [ J ]. AIChE Journal, 2004,50( 1 ) :255-259.
  • 10ZHAO C, WANG F. Improved batch process monitoring and quality prediction based on multiphase statistical analysis [J]. Ind. Eng. Chem. Res., 2008, 47(3):835-849.

共引文献268

同被引文献38

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部