摘要
A key challenge when imaging whole biomedical specimens is how to quickly obtain massive cellular information over a large field of view(FOV).We report a subvoxel light-sheet microscopy(SLSM)method enabling high-throughput volumetric imaging of mesoscale specimens at cellular resolution.A nonaxial,continuous scanning strategy is developed to rapidly acquire a stack of large-FOV images with three-dimensional(3-D)nanoscale shifts encoded.Then,by adopting a subvoxel-resolving procedure,the SLSM method models these low-resolution,cross-correlated images in the spatial domain and can iteratively recover a 3-D image with improved resolution throughout the sample.This technique can surpass the optical limit of a conventional light-sheet microscope by more than three times,with high acquisition speeds of gigavoxels per minute.By fast reconstruction of 3-D cultured cells,intact organs,and live embryos,SLSM method presents a convenient way to circumvent the trade-off between mapping large-scale tissue(>100 mm3)and observing single cell(∼1-μm resolution).It also eliminates the need of complicated mechanical stitching or modulated illumination,using a simple light-sheet setup and fast graphics processing unit-based computation to achieve high-throughput,high-resolution 3-D microscopy,which could be tailored for a wide range of biomedical applications in pathology,histology,neuroscience,etc.
基金
This research has received funding support from the 1000 Youth Talents Plan of China(P.F.)
the Fundamental Research Program of Shenzhen(P.F.,JCYJ20160429182424047)
and the National Heart Lung and Blood Institute[R01HL111437(T.K.H.)
R01HL083015(T.K.H.),R01HL118650(T.K.H.)
and EB U54 EB0220002(T.K.H.)].