期刊文献+

基于小波阈值法的脉搏波去噪算法 被引量:9

Pulse wave denoising algorithm based on the wavelet threshold method
在线阅读 下载PDF
导出
摘要 目的消除可穿戴式脉搏波监测设备在连续测量中由于运动造成的运动伪差,保证设备准确性和稳定性。方法通过选取合适的小波基、小波最大分解层数、阈值函数和阈值方法,对脉搏波信号进行小波阈值处理,提出了一种基于小波阈值法去除脉搏波噪声的算法。并针对在脉搏波信号采集过程中出现的基线漂移、工频干扰和运动伪差,与加窗傅里叶变换去噪后的结果进行对比。结果在信噪比、均方差和平滑度等关键指标上,小波阈值法的效果更优。利用db9小波基对脉搏波信号进行6层小波分解,设置启发式阈值所得到的处理效果最好。结论该算法能够有效抑制工频干扰和运动干扰,使信噪比提高22 dB,均方差接近于0,且平滑度降为原来的11%,实现脉搏波信号采集中干扰的有效去除。 Objective To eliminate the error caused by motion in the continuous measurement of the wearable pulse wave monitoring device so that the accuracy and stability of the device can be ensured.Methods By choosing the suitable wavelet base,the biggest wavelet decomposition layer,the threshold function and threshold method,we present an algorithm based on the wavelet threshold method to remove pulse wave noise and compare the results of windowed Fourier transform denoising with the baseline drift interference and motion error in pulse wave signal acquisition.Results The wavelet threshold method is more effective in key indicators such as the signal-to-noise ratio,mean square deviation and smoothness.In addition,after using DB9 wavelet base to decompose pulse wave signal with a 6-level wavelet and setting the heuristic threshold,we find that the processing effect is the best.Conclusions This algorithm can effectively suppress power frequency interference and motion interference so that the signal-to-noise ratio will be increased by 22dB,the mean square deviation will get close to 0,and the smoothness will increase to the original 11%,which will realize the effective removal of interference in the pulse wave signal acquisition.
作者 吴星 林林 陈海军 徐之标 WU Xing;LIN Lin;CHEN Haijun;XU Zhibiao(College of Biomedical Engineering,Guangdong Medical University,Dongguan,Guangdong Province 523808)
出处 《北京生物医学工程》 2021年第1期38-45,共8页 Beijing Biomedical Engineering
基金 广东省省级大学生创新创业训练计划项目(201510571035) 广东医科大学大学生创新实验项目(FZDI001)资助。
关键词 脉搏波 运动伪差 小波阈值法 基线漂移 信噪比 均方差 平滑度 pulse wave motion artifacts wavelet threshold method baseline drift signal-to-noise ratio mean square deviation smoothness
  • 相关文献

参考文献3

二级参考文献23

  • 1周静,陈允平,周策,梁劲.小波系数软硬阈值折中方法在故障定位消噪中的应用[J].电力系统自动化,2005,29(1):65-68. 被引量:44
  • 2DONOHO D L. De-noising by soft-thresholding[J]. IEEE Transactions Information Theory, 1995, 41(3) : 613-627.
  • 3AZZLINI A, FARGE M, SCHNEIDER K. Nonlinear wavelet thresholding : a reeursive method to determine the optimal denoising threshold [J]. Applied and Computational Harrnonie Analysis, 2005, 18(2): 177-185.
  • 4罗志昌,张松.扬益民.脉搏波的工程分析与临床应用[M].北京:科学出版社.2005.8-116.
  • 5黄世林,孙明异.中医脉象研究[M].北京:人民卫生出版社,1991:12-13.
  • 6Shu Jian-jun, Sun Yu-guang. Developing classification indices for Chinese pulse diagnosisEJ-. Comple mentary Therapies in Medicine, 2007, 15(3) : 190- 198.
  • 7Zhang Pei-yong, Wang Hui-yan. A framework for automatic time-domain characteristic parameters ex- traction of human pulse signal[J]. EURASIP Journal on Advances in Signal Processing, 2008, 9 (10) : 1382-1389.
  • 8Jessica L, Eamonn K, Stefano L, et al. A symbolic representation of time series, with implications for streaming algorithms [C]//Proc of the 8th ACM SIGMOD Workshop on Research Issue in Data Mining and Knowledge Discovery, San Diego, California, USA, 2003: 2-11.
  • 9Keogh E, Chakraharti K, Pazzani M, et al. Dimen- sionality reduction for fast similarity search in large time series databases[J]. Journal of Knowledge and Information Systems, 2000, 3(3): 263-286.
  • 10Loh W K, Kim S W. Index interpolation: An approach for subsequence matching supporting normalization transform in time-series databases[C]// Proceedings of the 9th International Conference on Information and Knowledge Management. New York, USA, 2000: 480-487.

共引文献43

同被引文献75

引证文献9

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部