期刊文献+

一种融合表观与属性信息的车辆重识别方法 被引量:4

A vehicle re-identification method by fusing the vehicle appearance and attribute information
在线阅读 下载PDF
导出
摘要 针对基于深度学习的车辆重识别模型缺乏提取车辆局部细节描述的能力,以及不同环境下同一车辆表观特征变化显著,增加车辆重识别的难度的问题,提出一种融合多尺度车辆表观和属性信息的重识别模型.充分利用车辆颜色和车型属性在不同环境下较为稳定且易判断的特性,将其融合到车辆表观特征中,获得强化提升的深度特征;另外使用交叉熵损失函数与Triplet损失函数构建多任务的目标优化函数对模型进行参数训练.该方法在VeRi-776车辆数据库上的实验结果表明:通过融合颜色和车型属性特征可以明显地提高车辆重识别的准确率,并可以取得优于其他大部分对比方法的性能. Although global features extracted from the deep learning-based model have secured strong discrimination abilities,they endure lack of descriptions about local details.Besides,the appearance of the same car in different environments changes significantly,thus increasing the difficulty of vehicle re-identification.Therefore,in this study,we propose a vehicle re-identification model which integrates multi-scale vehicle appearance and attribute information.Due to the robustness of the attribute information in different environments,we fuse attribute features into the appearance features to obtain an enhanced feature for accurate vehicle re-identification.Finally,a multi-task loss function containing the cross-entropy loss and the triplet loss is adopted to train model parameters.We conduct extensive experiment on the large-scale VeRi-776 dataset,and experimental results demonstrate the effectiveness of our proposed method,which can significantly improve the accuracy and outperform most compared methods.
作者 谢秀珍 罗志明 连盛 李绍滋 XIE Xiuzhen;LUO Zhiming;LIANG Sheng;LI Shaozi(School of Informatics,Xiamen University,Xiamen 361005,China;College of Mathematics and Information Engineering,Longyan University,Longyan 364002,China)
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第1期72-79,共8页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(61876159,61806172,U1705286)。
关键词 车辆重识别 特征提取 表观信息 属性信息 特征融合 vehicle re-identification feature extraction appearance information attribute information feature fusion
  • 相关文献

参考文献4

二级参考文献32

  • 1卢涛,陈德钊.径向基网络的研究进展和评述[J].计算机工程与应用,2005,41(4):60-62. 被引量:27
  • 2张坤华,王敬儒,张启衡.基于边界不变特征的扩展目标识别方法[J].光电工程,2005,32(8):1-5. 被引量:3
  • 3王连亮,陈怀新.图像识别的RSTC不变矩[J].数据采集与处理,2006,21(2):225-229. 被引量:5
  • 4代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 5XIA Limin.Vehicle recognition using boosting neural network classifiers[C]//Proceedings of the Sixth World Congress on Intelligent Control and Automation.Dalian,China,2006:9641-9644.
  • 6GOYAL A,VERMA B.A neural network based approach for the vehicle classification[C]//Proceedings of Computational Intelligence in Image and Signal Processing.Honolulu,USA,2007:226-231.
  • 7SHIN P,JASSO H,TILAK S,et al.Automatic vehicle type classification using strain gauge sensors[C]//International Conference on Pervasive Computing and Communications Workshops.White Plains,USA,2007:425-428.
  • 8LIM T R,GUNTORO A T.Car recognition using Gabor filter feature extraction[C]//IEEE Asia-Pacific Conference on Circuits and Systems.Singapore,2002:451-455.
  • 9KI Y K,BAIK D K.Vehicle-classification algorithm for single-loop detectors using neural networks[J].IEEE Transactions on Vehicular Technology,2006,55(6):1704-1711.
  • 10LIN C T,YEH C M,CHUNG J F,et al.Support vector based fuzzy neural network for pattern classification[J].IEEE Transactions on Fuzzy Systems,2006,14(1):31-41.

共引文献46

同被引文献30

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部