期刊文献+

感应电机无权值虚拟矢量模型预测转矩控制 被引量:2

Virtual Vector Based Model Predictive Torque Control of Induction Motor Without Weighting Factor
在线阅读 下载PDF
导出
摘要 为了消除感应电机(IM)传统模型预测转矩控制(MPTC)的加权值和减小算法的计算量,提出一种基于无差拍控制的无权值MPTC方法。通过转矩、磁链和电压之间的关系,基于磁链无差拍控制,得到一个期望电压矢量。通过判断期望电压矢量的位置,将电压控制集数量从8个减少为2个,减小了MPTC的计算负担。此外,价值函数中只含有一个转矩变量即可达到期望的控制效果,避免了加权值的设计。采用简化后的三矢量合成虚拟电压矢量,在扩大矢量选择域的同时也降低了传统虚拟矢量算法的复杂度,提高控制的稳态性能。仿真和试验结果证明所提方法具有良好的动、静态性能。 In order to eliminate the weighting value of traditional model predictive torque control(MPTC) of induction motor(IM) and reduce the computational complexity of the algorithm, a deadbeat based MPTC method is proposed. According to the relationship among torque, flux and voltage, an expected voltage vector is obtained based on deadbeat control of flux linkage. By judging the position of expected voltage vector, the number of voltage control sets is reduced from 8 to 2, which reduces the computational burden of MPTC. In addition, the value function contains only one variable of torque to achieve the desired control effect, avoiding the design of weighting value. The simplified three-vector synthesis virtual voltage vector not only expands the vector selection domain, but also reduces the complexity of the traditional virtual voltage vector algorithm and improves the steady-state performance of the control. Simulation and experimental results show that the proposed method has good dynamic and static performance.
作者 刘朦 卢子广 王静 LIU Meng;LU Ziguang;WANG Jing(School of Electrical Engineering,Guangxi University,Nanning 530004,China)
出处 《电机与控制应用》 2021年第1期20-27,34,共9页 Electric machines & control application
基金 广西自然科学基金项目(2018GXNSFDA138008)。
关键词 感应电机 模型预测转矩控制 加权值 虚拟电压矢量 induction motor(IM) model predictive torque control(MPTC) weighting factor virtual voltage vector
  • 相关文献

参考文献5

二级参考文献61

  • 1Cortes P, Kazmierkowski M, Kennel R, et al. Predictive control in power electronics and drives[J]. IEEE Trans. on Industrial Electronics, 2008, 55(12): 4312-4324.
  • 2Rodriguez J, Kennel R, Espinoza J, et al. High-performance control strategies for electrical drives: An experimental assessment[J]. IEEE Trans. on Industrial Electronics, 2012, 59(2): 812-820.
  • 3Mariethoz S, Domahidi A, Morari M. High-bandwidth explicit model predictive control of electrical drives[J]. IEEE Trans. on Indtistrial Electronics, 2012, 48(6): 1980-1992.
  • 4Miranda H, Cortes P, Yuz J, et al. Predictive torque control of induction machines based on state-space models[J]. IEEE Trans. on Industrial Electronics, 2009, 56(6): 1916-1924.
  • 5Geyer T, Papafotiou G, Morari, M. Model predictive direct torque control; part I. Concept, algorithm, and analysis[J]. IEEE Trans. on Industrial Electronics, 2009,56(6):1894-1905.
  • 6Cort6s P, Kouro S, La Rocca B, et al. Guidelines for weighting factors design in model predictive control of power converters and drives[C]//IEEE ICIT' 2009. Gippsland, VIC: IEEE, 2009: 1-7.
  • 7Zhang Y, Yang H. Model predictive torque control of induction motor drives with optimal duty cycle control[J]. IEEE Trans. on Power Electronics, 2014, in press.
  • 8Davari S A, Khaburi D A, Kennel R. An improved FCS-MPC algorithm for an induction motor with an imposed optimized weighting factor[J]. IEEE Trans. on Power Electronics, 2012, 27(3): 1540-1551.
  • 9Rojas C, Rodriguez J, Villarroel F, et al. Predictive torque and flux control without weighting factors[J]. IEEE Trans. on lndustrialElectronics, 2013, 60(2): 681-690.
  • 10Villarroel F, Espinoza J, Rojas C, et al. Multiobjective switching state selector for finite states model predictive control based on fuzzy decision making in a matrix converter[J]. IEEE Trans. on Industrial Electronics, 2013, 60(2): 589-599.

共引文献140

同被引文献15

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部