期刊文献+

A Note on Integral Structures in Some Locally Algebraic Representations of GL_(2)

原文传递
导出
摘要 In the p-adic local Langlands correspondence for GL2(Qp),the following theorem of Berger and Breuil has played an important role:the locally algebraic representations of GL2(Qp)associated to crystabelline Galois representations admit a unique unitary completion.In this note,we give a new proof of the weaker statement that the locally algebraic representations admit at most one unitary completion and such a completion is automatically admissible.Our proof is purely representation theoretic,involving neither(ψ,Γ)-module techniques nor global methods.When F is a finite extension of Qp,we also get a simpler proof of a theorem of Vignéras for the existence of integral structures for(locally algebraic)special series and for(smooth)tamely ramified principal series.
作者 Yong Quan HU
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2021年第1期59-72,共14页 数学学报(英文版)
基金 National Natural Science Foundation of China(Grant No.11688101) China’s Recruitement Program of Global Experts National Center for Mathematics and Interdisciplinary Sciences Hua Loo-Keng Center for Mathematical Sciences of Chinese Academy of Sciences。
关键词 Invariant norm DIAGRAM
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部