期刊文献+

基于FAERS对沙库巴曲缬沙坦不良反应的分析研究 被引量:21

Analytical study of adverse reactions of sacubitril/valsartan based on FAERS
原文传递
导出
摘要 目的:通过挖掘美国食品药品监督管理局不良事件呈报系统(FAERS)数据库中关于沙库巴曲缬沙坦的相关数据,探讨该药潜在的不良反应,为临床安全用药提供依据。方法:采用报告比值比法(ROR)和比例报告比值法(PRR)同时检测FAERS数据库中沙库巴曲缬沙坦的不良事件信号,检索时限从2015年第3季度该药上市至2019年第3季度共17个季度,并对结果进行分析研究。结果:经过多重筛查,ROR法与PRR法得到信号均一致合计41个且挖掘出33个未在说明书收录的警戒信号。其中较强的信号主要集中在低血压、室性心动过速、血管性水肿、听觉迟钝、高钾血症等,系统器官分类(SOC)涉及信号个数最多的主要集中在神经系统疾病和心脏疾病等,同时也挖掘出该药可能引起认知功能障碍等不良事件。结论:利用挖掘FAERS数据可较全面深入地分析研究沙库巴曲缬沙坦上市后的不良反应,进而有效地降低临床用药风险。 OBJECTIVE To explore the potential adverse reactions of sacubitril/valsartan by mining the relevant data of FDA database of Adverse Event Reporting System(FAERS) to provide rationales for clinical safe drug dosing.METHODS Reporting odds ratio(ROR) and proportional reporting ratio(PRO) were utilized for simultaneously detecting the adverse event signals of sacubitril/valsartan in the database of FAERS.The search time limit was from the third quarter of 2015 when the drug was launched to the third quarter of 2019.The results were analyzed for 17 quarters. RESULTS After multiple screenings,the signals obtained by ROR and PRR were consistent.A total of 41 and mined 33 warning signals were not listed in specification.Strong signals were predominantly concentrated in hypotension,ventricular tachycardia,angioedema,hypoacusis and hyperkalemia,etc.The largest number of signals involved in system organ class was concentrated in nervous system disorders and cardiac disorders,etc.Also the drug caused adverse events such as cognitive impairment,etc. CONCLUSION The method of mining FAERS data can comprehensively and thoroughly analyze the adverse reactions after marketing of sacubitril/valsartan so as to can effectively reduce the risk of clinical medication.
作者 陈琪莹 李毅敏 陈文发 CHEN Qi-ying;LI Yi-min;CHEN Wen-fa(Department of Pharmacy,Second Affiliated Hospital,Fujian Medical University,Fujian Quanzhou 362000,China)
出处 《中国医院药学杂志》 CAS 北大核心 2021年第3期264-268,共5页 Chinese Journal of Hospital Pharmacy
关键词 沙库巴曲缬沙坦 诺欣妥 比例失衡法 不良反应 数据挖掘 sacubitril/valsartan Entresto measure of disproportionality adverse reactions data mining
  • 相关文献

参考文献10

二级参考文献76

  • 1陈延,郭剑非,江冬明,詹思延.数据库挖掘和药物不良反应信号的探索与分析(下)[J].药物流行病学杂志,2006,15(2):104-107. 被引量:27
  • 2Slattery J, Alvarez Y, Hidalgo A. Choosing thresholds for statistical signal detection with the proportional reporting ratio[ J]. Drug Saf, 2013,36 (8) :687 - 692.
  • 3Grundmark B, Holmberg L, Garmo H, et al. Reducing the noise in signal detection of adverse drug reactions by standardizing the background : a pilot study on analyses of proportional reporting rati-os - by - therapeutic area [J]. Eur J Clin Pharmacol, 2014,70 : 627 - 635.
  • 4Ooba N, Kubota K. Selected control events and reporting odds ratio in signal detection methodology [ J]. Pharmacoepidemiol Drug Saf, 2010,19(11) :1159 -1165.
  • 5Kubota K, Koide D, Hirai T. Comparison of data mining methodol- ogies using Japanese spontaneous reports [ J ]. Pharmacoepidemiol Drug Saf, 2004,13(6) :387 -394.
  • 6Noren GN, Bate A, Orre R, et al. Extending the methods used to screen the WHO drug safety database towards analysis of COB-plex associations and improved accuracy for rare events [ J ]. Statist Med ,2006,25(21 ) :3740 - 3757.
  • 7Hauben M, Horn S, Reich L. Potential use of data-mining algo- rithms for the detection of surprise adverse drug reactions [ J ]. Drug Saf,2007,30(2) :143 - 155.
  • 8Thakrar BT, Grundschober SB, Doessegger L. Detecting signals of drug-drug interactions in a spontaneous reports database [ J ]. Br J Clin Pharmaco1,2007,64 (4) :489 - 495.
  • 9Wei JX, Li M, Sun YH, et al. A novel method for signal detection of adverse drug reactions based on proportional reporting ratios [ J]. Pharm World Sci ,2010,32(5 ):658 -662.
  • 10尚鹏辉,詹思延.数据挖掘在药品不良反应信号检出和分析中的应用(上)——药物流行病学研究新方法系列讲座(二)[J].中国药物应用与监测,2009,6(2):121-123. 被引量:11

共引文献252

同被引文献152

引证文献21

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部