期刊文献+

基于GF-2的乔木生物量估测模型研究 被引量:6

Estimation of tree biomass with GF-2
在线阅读 下载PDF
导出
摘要 以福建省将乐林场为研究区,使用野外实测样地数据,结合福建省二类调查数据,获取了共192个样地的生物量数据,其中杉木纯林112个,马尾松纯林80个.对覆盖研究区的2景GF-2影像进行预处理,提取光谱信息、植被指数、纹理特征及地形因子,筛选与样地生物量相关性较高的因子作为建模的自变量,采用支持向量机、随机森林及多元逐步回归3种方法分别建立了杉木和马尾松生物量模型.结果表明:支持向量机、随机森林模型拟合效果均比多元逐步回归模型好,其中随机森林模型决定系数R^(2)最高,2种样地的R2分别为0.65和0.72,估计精度也最高,分别为65.28%和76.82%;杉木样地3种模型的均方根误差分别为64.27、48.16和77.03,马尾松样地3种模型的均方根误差分别为54.79、48.18和65.63,其中随机森林模型的最低.在3种模型中,随机森林模型为乔木生物量的最优模型. Biomass data from a total of 192 plots(112 pure forests of Chinese fir,80 pure forests of Pinus massoniana)in Jiangle State Forest Farm in Sanming City,Fujian Province were obtained from field measured sample plot data and second-class survey data of Fujian Province.Two scene GF-2 images from the study area were preprocessed,spectral information,vegetation index,texture features and topographic factors were extracted,factors highly-correlated with the biomass as independent variables were screened out.Biomass models of fir and Pinus massoniana were established from support vector machine,random forest and multiple stepwise regressions.Fitting of the two machine learning models was found to be better than the multiple stepwise regression model.The random forest model showed the highest determination coefficient R^(2)(0.65 and 0.72 for the 2 plots),and the highest estimation accuracy(65.28%and 76.82%).The mean root square errors in the 3 models for the Chinese fir plot were 64.27,48.16 and 77.03.The mean root square errors in the three models for the Pinus massoniana plot were 54.79,48.16 and 65.63,with the random forest model showing the lowest value.It is concluded that the random forest model is the most optimal among all three models.
作者 丁志丹 孙玉军 孙钊 DING Zhidan;SUN Yujun;SUN Zhao(State Forestry&Grassland Administration Key Laboratory of Forest Resources&Environmental Management,Beijing Forestry University,100083,Beijing,China)
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第1期135-141,共7页 Journal of Beijing Normal University(Natural Science)
基金 林业科学技术推广资助项目([2019]06)。
关键词 乔木生物量 GF-2 支持向量机 随机森林 多元逐步回归 tree biomass GF-2 support vector machine random forest multiple stepwise regression
  • 相关文献

参考文献15

二级参考文献185

共引文献1741

同被引文献125

引证文献6

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部