期刊文献+

肾脏MR扩散峰度成像研究进展 被引量:6

Research advance in renal magnetic resonance diffusion kurtosis imaging
在线阅读 下载PDF
导出
摘要 MR扩散峰度成像(DKI)基于多项式模型,能够量化组织中水分子的扩散运动与自由高斯运动的偏差。DKI技术可以定量评价组织微环境的复杂性和异质性,近年来已用于评价肾脏功能及相关疾病,在肾脏肿瘤的分级,以及在梗阻性肾病、糖尿病肾病、高尿酸血症肾病等常见疾病的早期诊断中具有一定的应用价值。就DKI成像原理及在正常肾脏和肾脏常见疾病中的研究进展予以综述。 Based on polynomial model,diffusion kurtosis imaging(DKI)could quantify the deviation between true diffusion motion and free Gaussian distribution motion of water molecules in biological tissues.DKI technology,which can quantify the complexity and heterogeneity of tissue microenvironment,has been gradually applied in the evaluation of renal function and related diseases in recent years,and shows promising clinical application prospect in renal tumor grading and the early diagnosis of obstructive nephropathy,diabetic nephropathy,hyperuricemia nephropathy,etc.This article aims to review the technical principles of DKI and its research advance in normal kidneys and general renal diseases.
作者 袁仪忠 崔建民 沈文(审校) YUAN Yizhong;CUI Jianmin;SHEN Wen(First Central Hospital Institute,Tianjin Medical University,Tianjin 300192,China;Department of Radiology,Tianjin First Central Hospital)
出处 《国际医学放射学杂志》 北大核心 2021年第2期197-201,共5页 International Journal of Medical Radiology
基金 国家自然科学基金(81873888)。
关键词 磁共振成像 扩散峰度成像 肾脏 肾肿瘤 Magnetic resonance imaging Diffusion kurtosis imaging Kidney Renal tumor
  • 相关文献

参考文献7

二级参考文献69

  • 1Denis LB. Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure[J]. Radiology, 2013, 268:318-322.
  • 2Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis[J]. NMR Biomed, 2010, 23:698-710.
  • 3Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: The quantification of non-gaussion water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53:1432-1440.
  • 4Wu EX, Cheung MM. MR diffusion kurtosis imaging for neural tissue characterization[J]. NMR Biomed, 2010, 23:836-848.
  • 5Fieremans E, Jensen JH, Helpern JA. White matter characterization with diffusional kurtosis imaging[J]. Neurolmage, 2011, 58:177- 188.
  • 6Quentin M, Blondin D, Klasen J, et al. Comparison of different mathematical models of diffusion-weighted prostate MR imaging[J]. Magn Reson hnaging, 2012, 30:1468-1474.
  • 7Merisaari H, Jambor I. Optimization of b-value distribution for four mathematical models of prostate cancer diffusion-weighted imaging using b values up to 2000 s/mm2:Simulation and repeatability stu3y [J]. Magn Reson Med, 2015, 73:1954-1969.
  • 8Rosenkrantz AB, Pahani AR, Chenevert TL, et al. Body diffusion kurtosis imaging: basic principles, applications, and considerations for clinical practice[J]. J Magn Reson Imaging, 2015, 42:1190-1202.
  • 9Poot DH, den Dekker AJ, Achten E, et al. Optimal experimental design for diffusion kurtosis imaging[J]. IEEE Trans Med Imaging, 2010, 29:819-829.
  • 10Glenn GR, Helpern JA, Tabesh A, et al. Quantitative assessment of diffusional kurtosis anisotropy[J]. NMR Biomed, 2015, 28:448-459.

共引文献64

同被引文献56

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部